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Abstract

In the last decades, considerable efforts have been spent to characterize what makes NP-hard
problems tractable. A successful approach in this line of research is the theory of parameterized
complexity introduced by Downey and Fellows in the nineties. In this framework, the complexity
of a problem is not measured only in terms of the input size, but also in terms of a parameter
on the input. One of the most well-studied parameters is tree-width, a graph parameter which
measures how close a graph is to the topological structure of a tree. It appears that tree-width
has numerous structural properties and algorithmic applications.

However, only sparse graph classes can have bounded tree-width. But, many NP-hard prob-
lems are tractable on dense graph classes. Most of the time, this tractability can be explained by
the ability of these graphs to be recursively decomposable along vertex bipartitions (A,B) where
the adjacency between A and B is simple to describe. A lot of graph parameters – called width
measures – have been defined to characterize this ability, the most remarkable ones are certainly
clique-width, rank-width, and mim-width. In this thesis, we study the algorithmic properties of
these width measures.

We provide a framework that generalizes and simplifies the tools developed for tree-width
and for problems with a constraint of acyclicity or connectivity such as Connected Vertex
Cover, Connected Dominating Set, Feedback Vertex Set, etc. For all these problems,
we obtain 2O(k) ·nO(1), 2O(k log(k)) ·nO(1), 2O(k2) ·nO(1) and nO(k) time algorithms parameterized
respectively by clique-width, Q-rank-width, rank-width and mim-width. We also prove that
there exists an algorithm solving Hamiltonian Cycle in time nO(k), when a clique-width
decomposition of width k is given. Finally, we prove that we can count in polynomial time
the minimal transversals of β-acyclic hypergraphs and the minimal dominating sets of strongly
chordal graphs. All these results offer promising perspectives towards a generalization of width
measures and their algorithmic applications.

Resumé

Durant ces dernières décennies, d’importants efforts et beaucoup de café ont été dépensés en vue
de caractériser les instances faciles des problèmes NP-difficiles. Dans ce domaine de recherche, une
approche s’avère être redoutablement efficace : la théorie de la complexité paramétrée introduite
par Downey et Fellows dans les années 90. Dans cette théorie, la complexité d’un problème
n’est plus mesurée uniquement en fonction de la taille de l’instance, mais aussi en fonction d’un
paramètre. Dans cette boite à outils, la largeur arborescente est sans nul doute un des paramètres
de graphe les plus étudiés. Ce paramètre mesure à quel point un graphe est proche de la structure
topologique d’un arbre. La largeur arborescente a de nombreuses propriétés algorithmiques et
structurelles.

Néanmoins, malgré l’immense intérêt suscité par la largeur arborescente, seules les classes de
graphes peu denses peuvent avoir une largeur arborescente bornée. Mais, de nombreux problèmes
NP-difficiles s’avèrent faciles dans des classes de graphes denses. La plupart du temps, cela
peut s’expliquer par l’aptitude de ces graphes à se décomposer récursivement en bipartitions
de sommets (A,B) où le voisinage entre A et B possède une structure simple. De nombreux
paramètres – appelés largeurs – ont été introduits pour caractériser cette aptitude, les plus
remarquables sont certainement la largeur de clique, la largeur de rang, la largeur booléenne et
la largeur de couplage induit. Dans cette thèse, nous étudions les propriétés algorithmiques de
ces largeurs.

Nous proposons une méthode qui généralise et simplifie les outils développés pour la largeur
arborescente et les problèmes admettant une contrainte d’acyclicité ou de connexité tel que
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Couverture Connexe, Dominant Connexe, Coupe Cycle, etc. Pour tous ces problèmes,
nous obtenons des algorithmes s’exécutant en temps 2O(k) ·nO(1), 2O(k log(k)) ·nO(1), 2O(k2) ·nO(1)

et nO(k) avec k étant, respectivement, la largeur de clique, la largeur de Q-rang, la larguer de
rang et la largueur de couplage induit. On prouve aussi qu’il existe un algorithme pour Cycle
Hamiltonien s’exécutant en temps nO(k) quand une décomposition de largeur de clique k
est donné en entrée. Finalement, nous prouvons qu’on peut compter en temps polynomial le
nombre de transversaux minimaux d’hypergraphes β-acyclique ainsi que le nombre de dominants
minimaux de graphes fortement triangulés. Tous ces résultats offrent des pistes prometteuses en
vue d’une généralisation des largeurs et de leurs applications algorithmiques.
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Introduction en français

Depuis la construction des premiers ordinateurs dans les années 40, le besoin d’algorithmes
efficaces pour résoudre une multitudes de problèmes n’a jamais cessé de croître. Cela motiva
les chercheurs à étudier la complexité des problèmes, i.e., les ressources, tel que le temps et la
mémoire, qu’un ordinateur doit utiliser pour résoudre un problème. Les chercheurs constatèrent
assez rapidement que certains problèmes semblaient plus difficiles à résoudre que d’autres. Par
exemple, calculer le plus grand diviseur commun de deux entiers peut être fait assez rapidement
tandis que trouver tous les diviseurs d’un entier semble demander beaucoup plus de temps
et de mémoire. Malgré des décennies de recherche intensive, il existe de nombreux problèmes
intéressants pour lesquels personne n’a pu trouver d’algorithmes rapides les résolvant ni prouver
qu’ils n’en admettaient pas. Néanmoins, il est possible de caractériser la difficulté des problèmes
en comparant leurs complexités relatives. Par exemple, étant donné les diviseurs de deux entiers
a et b, il est facile de calculer le plus grand diviseur commun de a et de b. Ainsi, trouver les
diviseurs d’un entier est au moins aussi difficile que calculer le plus grand diviseur commun de
deux entiers. Cette approche a permis de classifier les problèmes en fonction de leurs complexités
relatives.

La classification la plus célèbre est sans aucun doute celle émergeant de la théorie de la
NP-complétude introduite indépendamment par Cook [25] et Levin [104] au début des années
70. Intuitivement, un problème est dans la classe NP si il peut être formulé comme une question
dont la réponse est soit « oui » soit « non » et dont les instances où la réponse est « oui »
peuvent facilement être vérifiée. Le Traveling Salesman Problem est un exemple typique
de problème difficile dans NP. Étant donné un entier L, une liste de villes et les distances
entre chaque paire de villes, ce problème demande si il existe une route visitant chaque ville
et revenant à son point de départ de longueur inférieure à L. Malgré son apparente simplicité,
personne jusqu’à présent n’a pu trouver d’algorithme rapide pour résoudre ce problème. Il se
trouve que ce problème a une propriété étonnante : il est NP-difficile [97], c’est à dire qu’il est
au moins aussi difficile que chacun des problèmes dans NP. En d’autres mots, si le Traveling
Salesman Problem admet un algorithme rapide alors tous les problèmes dans NP admettent
un algorithme rapide. Des milliers de problèmes intéressants se sont révélés être des problèmes
NP-difficiles [68, 97] et aucun d’entre eux ne semblent admettre d’algorithme rapide. Ceci motiva
les chercheurs à conjecturer que P ̸= NP où P est la classe des problèmes admettant un algorithme
dont le temps d’exécution est polynomial en la taille de l’instance. Cette conjecture est considérée
par de nombreux chercheurs comme la plus importante conjecture mathématique, malgré des
décennies de recherche intensive elle est reste encore ouverte [63].

À première vue, P ̸= NP ressemble à un mur insurmontable et l’étude des problèmes
NP-difficiles semble être une impasse. Mais les problèmes NP-difficiles sont connus pour avoir
d’innombrables applications dans la vie réelle, on ne peut tout simplement pas adopter la poli-
tique de l’autruche à leurs égards. Par exemple, le Traveling Salesman Problem a de
nombreuses applications en logistique et en planification mais aussi en génétique au niveau du
séquençage ADN [107].
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En dépit de leurs difficultés théoriques, en pratique, des softwares rapides tel les solveurs SAT
ont été développés pour résoudre des problèmes NP-difficiles. Bien sur, ça ne prouve pas que
P = NP car ces derniers n’arrivent pas à résoudre rapidement toutes les instances d’un problème
NP-difficile. Les bonnes performances des ces softwares peuvent s’expliquer en partie par le
fait que les instances rencontrées en pratique ne sont pas arbitraires. Ces instances cachent de
nombreuses structures qui expliquent pourquoi elles sont faciles à résoudre [52, 53]. Par exemple,
en pratique, une instance du Traveling Salesman Problem peut consister en un ensemble
de villes existantes reliées par un réseau routier. Pour résoudre le problème sur un telle instance,
un algorithme peut utiliser le fait qu’un réseau routier, étant construit par des homo sapiens,
est structuré et optimisé pour le transport. Durant ces dernières décennies, d’importants efforts
et beaucoup de café ont été dépensés en vue de caractériser ces structures cachées et de les
exploiter pour obtenir des algorithmes rapides.

Dans ce domaine de recherche, une approche s’avère être redoutablement rapide : la théorie
de la complexité paramétrée introduite par Downey et Fellows [42] dans les années 90. Dans cette
théorie, la complexité d’un problème n’est plus mesurée uniquement en fonction de la taille de
l’instance, mais aussi en fonction d’un paramètre. Cette nouvelle dimension permet d’obtenir une
classification des problèmes NP-difficiles beaucoup plus fine qu’en théorie de la NP-complétude.
Durant ces 30 années d’existence, la complexité paramétrée est devenue un domaine important
de l’informatique théorique, elle est au cœur de plus d’un millier de publications, en particulier,
trois livres récents [10, 37, 43] lui sont consacrés. Formellement, un problème paramétré est
un problème dont chaque instance est associée avec une valeur numérique : le paramètre. Un
problème donné peut être paramétré par une multitude de paramètres. Le choix du paramètre
a un immense impact sur la complexité du problème. Définissons et commentons rapidement les
concepts les plus importants de la complexité paramétrée.

• Un problème paramétré est dit FPT s’il admet un algorithme FPT : un algorithme dont
le temps d’exécution est f(k) · nO(1) avec k le paramètre, n la taille de l’instance et f une
fonction. Un des objectifs principaux en complexité paramétrée est de créer des algorithmes
FPT où la fonction f et l’exposant de n sont les plus petits possibles. En plus de leurs
indéniable intérêt théorique, les algorithmes FPT sont également intéressants en pratique
[24, 50, 53, 102, 103].

• Un problème paramétré est dit XP s’il admet un algorithme XP : un algorithme dont le
temps d’exécution est f(k) ·ng(k) avec k le paramètre, n la taille de l’instance et avec f et
g deux fonctions. En d’autres mots, un problème paramétré est XP si on peut le résoudre
en temps polynomial sur les instances où le paramètre est considéré comme une constante.
Contrairement aux algorithmes FPT, l’intérêt des algorithmes XP est avant tout théorique
car ils sont significativement moins performants que les algorithmes FPT [52].

Tandis que tous les problèmes FPT sont par définition XP, certains problèmes XP ne sem-
blent pas admettre d’algorithmes FPT. Downey et Fellows [41] ont défini une classe de
problèmes dans XP appelée W[1]. Il est conjecturé que FPT ̸= W[1], i.e., les problèmes
dans W[1] ne sont pas FPT. Cette conjecture est pratiquement aussi raisonnable que
P ̸= NP; dans les faits, les deux conjectures se ressemblent beaucoup [52]. Similairement
aux réductions polynomiales utilisées pour prouver la NP-difficulté d’un problème, il ex-
iste une notion de réduction entre problèmes paramétrés pour prouver qu’un problème
est W[1]-difficile (l’analogue de NP-difficile) et ainsi qu’il n’admet vraisemblablement pas
d’algorithme FPT.

En plus de ces concepts, la complexité paramétrée offre de nombreuses techniques pour créer
des algorithmes rapides [37]. Elle fournit aussi des outils pour obtenir des bornes inférieures
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conditionnelles sur la complexité paramétré d’un problème tel que la W[1]-difficulté [37, 43].
Cette thèse se consacre à la création d’algorithmes FPT et XP rapides. Une partie des algorithmes
que nous allons présenter sont asymptotiquement optimaux sous une hypothèse de complexité
appelée Exponential Time Hypothesis (abrégée en ETH). Cette hypothèse de complexité a été
introduite en 2001 par Impagliazzo et Paturi [82]. Informellement, ETH suppose qu’on ne peut
pas résoudre le problème 3-SAT en temps 2o(n) avec n le nombre de variables. Grâce à ETH, on
peut prouver des bornes inférieures sur la complexité classique de problèmes NP-difficiles mais
aussi sur leurs complexités paramétrées.

La grande majorité des résultats obtenus concernant la complexité paramétrée sont de près
ou de loin rattachés aux graphes. Un graphe est une structure de donnée qui modélise une relation
binaire entre des entités. Formellement, un graphe est une paire ordonnée G = (V (G), E(G)) avec
V (G) un ensemble d’éléments appelés sommets et E(G) un ensemble de paires non-ordonnées de
sommets appelées arêtes. Malgré leurs extrême simplicité, les graphes permettent de modéliser
un nombre incalculable de concepts. On les utilise dans de nombreux domaines, en informatique
mais aussi en biologie, en chimie, en physique, en économie, en électronique, en industrie, etc.
Par exemple, les graphes excellent dans la modélisation de réseaux tel que les réseaux sociaux
et les réseaux routiers en identifiant les sommets avec les carrefours et les arrêtes avec les routes
qui les séparent.

Les graphes offrent un riche panel de paramètres tel que le degré maximum (nombre maxi-
mum de voisins d’un sommet), le diamètre (distance maximum entre deux sommets), le genre,
la dégénérescence, etc. C’est donc sans surprise qu’ils s’avèrent être un terreaux fertiles pour
de nombreux résultats en complexité paramétrée, même pour des problèmes qui ne sont pas
directement liés aux graphes tel que des problèmes en intelligence artificielle [20, 79, 113].

La largeur arborescente est sans aucun doute un des paramètres de graphe les plus étudiés. Ce
paramètre a été redécouvert plusieurs fois dans différents contextes et notamment par Robertson
et Seymour [126] dans leurs monumentale projet sur les mineurs de graphes. Intuitivement, la
largeur arborescente mesure à quel point un graphe est proche de la structure topologique d’un
arbre. Plus précisément, un graphe a une largeur arborescente au plus k si il peut être représenté
par une décomposition récursive (appelée décomposition arborescente) constituée d’ensembles
de sommets (appelés sacs) de tailles au plus k connectés entre eux à la manière d’un arbre.
La largeur arborescente a de nombreuses propriétés algorithmiques et structurelles, voir [8]
pour une vue d’ensemble. Une de ces propriétés algorithmiques les importantes se retrouve
dans le théorème de Courcelle [29] : un des plus célèbre méta-théorèmes en informatique. Il
énonce que tout problème exprimable en logique monadique du second ordre (appelée MSO2)
peut être résolu en temps f(k) · n sur un graphe de n sommets et avec une décomposition
arborescente de largeur au plus k. Bodlaender [7] prouva un résultat tout aussi fameux qui
énonce qu’on peut calculer en temps f(k) ·n une décomposition de largeur arborescente optimale
d’un graphe de largeur arborescente au plus k. Ensemble, ces deux résultats prouvent qu’un
nombre gargantuesque de problèmes sont FPT paramétrés par la largeur arborescente. Parmi
ces problèmes, on retrouve des problèmes NP-difficiles célèbres et intensivement étudiés tel que
Dominating Set, Hamiltonian Cycle et 3-Coloring. Cependant, les algorithmes qu’on
obtient à travers le théorème de Courcelle sont trop souvent inutilisables en pratique car la
fonction f dans leurs temps d’exécution est énorme. Beaucoup d’effort ont été porté pour obtenir
de meilleurs algorithmes. De nos jours, pour de nombreux problèmes NP-difficiles, nous avons
un algorithme paramétré par la largeur arborescente qui est optimal sous ETH.

Néanmoins, malgré l’immense intérêt suscité par la largeur arborescente, seul les classes de
graphes peu denses peuvent avoir une largeur arborescente bornée. Mais, de nombreux problèmes
NP-difficiles s’avèrent faciles dans des classes de graphes denses. La plupart du temps, cela
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peut s’expliquer par l’aptitude de ces graphes à se décomposer récursivement en bipartitions
de sommets (A,B) où le voisinage entre A et B possède une structure simple. De nombreux
paramètres – appelés largeurs – ont été introduits pour caractériser cette aptitude, les plus
remarquables sont certainement la largeur de clique [35], la largeur de rang [116], la largeur
booléenne [17] et la largeur de couplage induit [132]. Dans cette thèse, nous étudions les propriétés
algorithmiques de ces largeurs.

Expliquons comment ces paramètres sont définis. La largeur de clique est défini à partir
des opérations suivantes dans les graphes labellisés : (1) la création d’un sommet avec un label
i ∈ N, (2) la relabellisation de tous les sommets labellisés i avec le label j, (3) l’union disjointe
de deux graphes labellisés, (4) l’ajout de toutes les arêtes entre les sommets labellisés i et ceux
labellisés j. La largeur de clique d’un graphe est le plus petit nombre de labels nécessaires pour
le construire à partir de ces opérations. Les expressions construisant un graphe avec au plus k
labels sont appelées k-expressions.

De leurs coté, la largeur de rang, la largeur de couplage induit et de nombreuses autres
largeurs sont définis à partir de la notion d’arbuste. Un arbuste d’un graphe G est une paire
(T, δ) où T est un arbre enraciné et δ est une bijection entre les sommets de G et les feuilles
de T . Chaque nœud x de T est associé à un ensemble de sommets Vx dans G correspondant
aux sommets qui sont en bijection avec les descendants de x. Étant donné une fonction f :
2V (G) → N, nous pouvons associer à chaque arbuste (T, δ) de G, une mesure – appelée f-largeur
– correspondant au maximum f(Vx) parmi tous les nœuds x de T . La f-largeur de G est alors la
f-largeur minimum parmi tous les arbustes de G.

Par exemple, la largeur de rang est définie à partir de la fonction f(A) qui correspond au
rang dans GF (2) de la matrice d’adjacence entre A et V (G) \A; si on prend le rang dans Q, on
obtient une variante de la largeur de rang introduite dans [120] appelée largeur de Q-rang. Pour
la largeur de couplage induit, f(A) correspond à la taille maximum d’un couplage induit dans le
graphe biparti associé à A et V (G) \ A. La Figure 1 présente un exemple d’arbuste (T, δ) d’un
graphe G. Remarquez que la largeur de (Q-)rang de (T, δ) égale 2 et ceci est optimal, i.e., la
largeur de (Q-)rang de G est 2. Cependant, la largeur de couplage induit de (T, δ) est 2 mais
cela n’est pas optimal car on peut trouver un arbuste de largeur de couplage induit 1.

Les notions d’arbuste, de décomposition arborescente et de k-expression sont très efficaces
pour résoudre rapidement les problèmes NP-difficiles avec des algorithmes de programmation
dynamique. Expliquons les grandes idées utilisées pour créer de tels algorithmes avec les arbustes
(les mêmes idées marchent sur les décompositions arborescente et les k-expressions). Supposons
qu’on veut trouver un ensemble de sommet satisfaisant une propriété P de taille maximum
dans un graphe G. Pour ce faire, on dispose d’un arbuste (T, δ) de G avec une petite f-largeur
pour une certaine fonction f. Afin de résoudre ce problème, nous allons parcourir les nœuds
de T de bas en haut et à chaque nœud x de T , nous allons calculer un ensemble de solutions
partielles, une solution partielle étant une partie de G[Vx] pouvant potentiellement s’étendre en
une solution. Puisqu’on recherche un ensemble de sommets, les solutions partielles associées à
un nœud x seront des sous-ensembles de Vx. L’idée principale est de calculer, pour chaque nœud
x de T , un ensemble de solutions partielles Sx qui représente 2Vx , i.e., pour chaque ensemble
X ⊆ Vx et chaque Y ⊆ V (G) \ Vx, si X ∪ Y vérifie P, alors il existe un ensemble X ′ ∈ Sx tel
que X ′ ∪ Y vérifie P et avec |X ′| ≥ |X|. Avec cette notion de représentativité, on est assuré de
trouver une solution à notre problème (si il en existe une) dans l’ensemble de solutions partielles
calculé pour la racine de T . La plupart des algorithmes de programmation dynamique sont basés
sur ce concept de représentant, et proposer un algorithme rapide se réduit souvent à trouver
une manière de calculer des petits représentants. Généralement, ceci est fait en définissant une
relation d’équivalence ∼ sur 2Vx avec « peu » de classes d’équivalence et tel que X ∼ W si pour
tout Y ⊆ V (G) \ Vx, l’ensemble X ∪ Y vérifie P si et seulement si W ∪ Y vérifie aussi P. Pour
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(a) Un graphe G.

(b) Un arbuste (T, δ) de G.
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(d) Matrice d’adjacence entre

Vi et V (G) \ Vi.

Figure 1: La Sous-figure (a) présente un graphe G. La Sous-figure (b) montre un arbuste (T, δ)
de G avec r comme racine de T . Observez que l’ensemble de sommets associé au nœud i est
Vi := {v1, v3, v4}. Les Sous-figures (c) et (d) représentent, respectivement, le graphe biparti et
la matrice d’adjacence associés avec les ensembles de sommets Vi et V (G) \ Vi.

créer un algorithme FPT (respectivement XP), le nombre N de classes d’équivalence de ∼ ainsi
que le temps T pour décider si X ∼ W doivent être bornés par f(k) · nO(1) (resp. f(k) · ng(k))
avec k la f-largeur de (T, δ) et f, g des fonctions. Muni d’une telle relation d’équivalence, nous
pouvons, étant donné un représentant S⋆

x de 2Vx , calculer en temps |S⋆
x| ·N · T un ensemble Sx

de taille N qui représente 2Vx . Effectivement, il suffit pour cela de garder un ensemble de taille
maximum pour chaque classe d’équivalence de ∼ dans S⋆

x.
Pour calculer les ensembles Sx, pour tous les nœuds x de T , nous commençons par les calculer

pour les feuilles de T . Cette étape est triviale car |Vx| = 1. Pour chaque nœud interne x de T
avec deux enfants a et b, nous calculons Sx à partir de Sa et de Sb. Généralement, on calcule
un ensemble S⋆

x de taille au plus N2 en prenant l’ensemble des solutions partielles obtenues par
l’union d’une solution partielle de Sa et d’une solution partielle de Sb. Normalement, il est facile
de prouver que S⋆

x représente 2Vx à partir du fait que Sa et Sb représentent, respectivement, 2Va

et 2Vb . Maintenant, on calcule Sx en temps N3 ·T à partir de S⋆
x comme expliqué précédemment.

Vu qu’un arbuste possèdent 2n − 1 nœuds, en appliquant ces idées, on obtient un algorithme
s’exécutant en temps O(N3 · T · n).

Il y a trois aspects importants à considérer quand on étudie et compare des largeurs.

(a) La complexité paramétrée du calcul d’une décomposition de largeur optimale ou approchée.

(b) L’ensemble des graphes où cette largeur est petite.

(c) La complexité paramétrée des problèmes NP-difficiles paramétrés par cette largeur en
supposant qu’une décomposition soit donnée en entrée.

L’Aspect (a) doit être considéré comme une étape de pré-calcul car une fois calculée la
décomposition peut servir à résoudre rapidement de nombreux problèmes. Malheureusement,
pour toutes les largeurs abordées dans cette thèse, calculer une décomposition de largeur optimale
s’avère être NP-difficile. Cependant, pour la largeur arborescente et la largeur de (Q-)rang,
il existe des algorithmes FPT rapides pour calculer une décomposition qui approxime à une
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constante près la largeur du graphe en entrée. Concernant la largeur de clique et de couplage
induit, les algorithmes utilisant ces largeurs requièrent qu’une k-expression ou qu’un arbuste
soit donné en entrée. En effet, on ne sait pas si on peut approximer à un facteur constant près
la largeur de clique (ou de couplage induit) d’un graphe avec un algorithme XP. Nous donnons
une vue d’ensemble concernant cet aspect en Section 2.5.

L’Aspect (b) est capital. En effet, même si une largeur est facile à calculer (ou à approximer),
cette dernière peut être énorme, i.e., proche du nombre de sommets. Il est important de comparer
les largeurs sur cet aspect car deux largeurs peuvent résoudre un problème avec le même temps
d’exécution mais il peut y avoir une différence immense entre les valeur de ces deux largeurs sur
un graphe.

Par exemple, la largeur de clique est plus générale que la largeur arborescente. En d’autres
mots, si une classe de graphes a une largeur arborescente bornée alors sa largeur de clique est
également bornée [35], mais le contraire est faux : la largeur arborescente d’une clique de taille
n est n − 1 tandis que sa largeur de clique est au plus de 2. La largeur de rang et de Q-rang
sont aussi générales que la largeur de clique, i.e., ces trois largeurs sont bornées dans les mêmes
classes de graphes. Cependant, la largeur de clique d’un graphe peut être exponentiellement plus
grande que sa largeur de (Q-)rang. De son coté, la largeur de couplage induit est plus générale
que les quatre autres largeurs, contrairement à ces dernières, elle est même bornée dans les
graphes d’intervalles et de permutation où les autres largeurs ne sont pas bornées [5, 76].

Intuitivement, plus une largeur est générale plus il va être dur de résoudre des problèmes
NP-difficiles avec celle-ci. Comparer la généralité des largeurs est utile car si une largeur f est
plus générale qu’une largeur g alors :

• si un problème P paramétré par f est FPT, alors P est FPT paramétré par g et

• si un problème P ′ est W[1]-difficile paramétré par g, alors P ′ est aussi W[1]-difficile
paramétré par f.

Par conséquent, un problème est FPT paramétré par la largeur de clique si et seulement si il est
FPT paramétré par la largeur de (Q-)rang. Cependant, même si deux largeurs sont équivalentes
en terme de généralité, ça ne veut pas dire qu’elles ont les même propriétés ni que les techniques
algorithmiques employées pour une vont s’avérer efficaces pour l’autre. Dans la Section 2.3, nous
donnons un état de l’art sur les relations qu’entretiennent les différentes largeurs au niveau de
l’Aspect (b).

De ce qu’on a dit, la largeur de rang semble surpasser la largeur de clique à la fois sur l’Aspect
(a) et sur l’Aspect (b). Cependant, cette supériorité se paie sur l’Aspect (c) : la largeur de rang
est plus difficile à manipuler que la largeur de clique pour résoudre des problèmes.

L’Aspect (c) est le thème central de cette thèse. Cet aspect a été intensivement étudié
durant ces dernières décennies. Grâce au théorème de Courcelle [29] et à ses variantes [3, 13]
(présentés dans la Sous-section 2.6.1), on connaît un nombre incommensurable de problèmes NP-
difficiles qui sont FPT paramétrés par la largeur arborescente. Courcelle, Makowsky et Rotics
prouvèrent une variante du théorème de Courcelle [28] pour la largeur de clique et de (Q-)rang.
Plus précisément, ils démontrèrent que tout problème exprimable en logique monadique du pre-
mier ordre (appelée MSO1) – une restriction de MSO2 – est FPT paramétré par la largeur de
clique et de (Q-)rang. De nombreux problèmes classiques sont exprimables en MSO1 comme
Dominating Set et Feedback Vertex Set. Cependant, les temps d’exécution des algo-
rithmes qu’on obtient à partir de ces méta-théorèmes sont épouvantables. Pour obtenir des
algorithmes efficaces, il est nécessaire de mettre les mains dans le cambouis.

Pour la largeur arborescente et la largeur de clique, nous avons une idée précise de la com-
plexité de nombreux problèmes classiques tel que Vertex Cover, Hamiltonian Cycle et
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Graph Coloring. C’est à dire que pour ces problèmes, nous connaissons des algorithmes
paramétrés par la largeur arborescente du graphe en entrée (ou la largeur de clique d’une k-
expression donnée en entrée) dont la dépendance sur le paramètre est asymptotiquement opti-
male sous ETH. En revanche, pour les autres largeurs, notre connaissance est assez limitée. Pour
de nombreux problèmes NP-difficiles, il a une grosse différence entre le temps d’exécution des
meilleurs algorithmes et les meilleures bornes inférieures. Dans la Section 2.6, nous donnons une
vue d’ensemble des meilleurs algorithmes connus en incluant les résultats de cette thèse et les
meilleures bornes inférieures connues pour plusieurs problèmes NP-difficiles classiques.

Dans le reste de cette introduction, nous allons présenter en détails les questions traitées
dans cette thèse ainsi que ses contributions.

Tandis que les largeurs définies à partir du rang de matrices binaires4 dans différents corps
ont été intensivement étudiées [92, 95, 115, 120], on ne connaît rien des largeurs qu’on pourrait
obtenir à partir de décompositions de matrices dérivées d’autres structures algébriques. Dans
le Chapitre 3, nous introduisons deux nouvelles largeurs, qui à notre connaissance n’ont jamais
été étudiées auparavant. On les a appelées respectivement largeur de N-rang et largeur de B-
rang. Ces deux largeurs sont définies à partir de notions de décomposition de matrices dans
des semi-anneaux. Un semi-anneaux est une structure algébrique ressemblant aux anneaux mais
sans la contrainte que chaque élément doit avoir un inverse pour l’addition. Pour définir ces deux
largeurs, nous utilisons les semi-anneaux suivants :

• le semi-anneau de Boole B = ({0, 1},∨,∧) où ∨ et ∧ sont, respectivement, le ou et le et
logique,

• le semi-anneau (N,+, ·) où + et · correspondent à l’addition et la multiplication qu’on
apprend à l’école primaire.

Malgré le fait que ces semi-anneaux n’ont pas toutes les propriétés d’un corps, Froidure [64]
a prouvé qu’on pouvait définir à partir d’eux une notion de rang dans les matrices binaires.
Étant donné une matrice binaire M , on définit ainsi rwB(M) (resp. rwN(M)) comme étant le
nombre minimum de vecteurs nécessaires pour générer les lignes de M dans B (resp. (N,+, ·)).
Par exemple, pour la matrice M dont les lignes sont (1, 1, 0), (0, 1, 1) et (1, 1, 1). La somme des
vecteurs (1, 1, 0) et (0, 1, 1) dans B, (N,+, ·) et GF (2) sont égales, respectivement, à (1, 1, 1),
(1, 2, 1) et (1, 0, 1). Par conséquent, nous avons rwB(M) = 2, rwN(M) = 3 et le rang de M dans
GF (2) égale 3.

La largeur de B-rang (respectivement N-rang) d’un graphe G correspond à la rwB-largeur
(resp. rwN-largeur) de G où rwB(A) := rwB(M) (resp. rwN(A) := rwN(M)) avec M la matrice
d’adjacence entre A et V (G) \A.

Dans cette thèse, nous prouvons que ces deux paramètres ont la même généralité que la
largeur de clique et de rang. Pour cela, nous démontrons que rwB(A) (resp. rwN(A)) correspond
au nombre minimum de bicliques nécessaires pour couvrir (resp. partitionner) les arêtes du
graphe biparti associé à A et V (G)\A. À travers ces équivalences et grâce à [22], nous déduisons
que les calculs de rwB(A) et de rwN(A) sont NP-difficiles et qu’on ne peut calculer rwB(A) en
temps 22

o(rwB(A)) en supposant ETH. De plus, grâce à un méta-théorème de Sæther et Vatshelle
[128], nous pouvons étendre ces résultats de difficulté aux calculs des deux largeurs dans les
graphes.

Au vu de ces résultats, ces deux largeurs se révèlent décevantes : elles ont l’air très difficiles
à calculer et elles ne se démarquent pas assez de la largeur de clique. Pour toutes ces raisons,
nous n’avons pas continué l’étude de la largeur de B-rang et de la largeur de N-rang.

4Matrices dont les entrées sont 0 ou 1.
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À la place, nous nous sommes concentrés sur les applications algorithmiques de la largeur de
clique, la largeur de rang et la largeur de couplage induit. Apprivoiser un problème NP-difficile
– trouver un bon algorithme – avec ces largeurs peut être aussi bien une simple formalité qu’un
calvaire. Les problèmes NP-difficiles les plus gentils sont certainement ceux dont on peut vérifier
une solution localement : en regardant juste le voisinage de chaque sommets séparément. C’est le
cas des problèmes Independent Set, Dominating Set, et Maximum Induced Matching.
Ces trois problèmes sont des problèmes de (σ, ρ)-domination. Étant donné une paire (σ, ρ) de
sous-ensembles finis ou co-finis de N et un graphe G, un (σ, ρ)-dominant de G est un sous-
ensemble D de V (G) tel que, pour tout sommet v ∈ V (G), le nombre de voisins de v dans D
appartient à σ si v ∈ D ou à ρ sinon. Un problème est un problème de (σ, ρ)-domination si il
consiste à trouver un (σ, ρ)-dominant de poids maximum ou minimum. Par exemple, le problème
Dominating Set consiste à trouver un (N,N\{0})-dominant de poids minimum. Énormément
de problème NP-difficiles appartiennent à cette famille de problèmes voir [18, Table 1].

Cette famille de problème a été introduite et apprivoisée avec la largeur arborescente par
Telle et Proskurowski [129]. Elle a été aussi étudiée avec les largeurs de clique, de (Q-)rang
et de couplage induit dans [18, 73, 120]. Grâce à [18, 129], nous avons une idée précise de la
complexité des problèmes de (σ, ρ)-domination paramétrés par la largeur arborescente ou la
largeur de clique. C’est à dire, qu’on sait résoudre ces problèmes en temps 2O(k) ·n et on connaît
de nombreux problèmes de (σ, ρ)-domination qui ne peuvent pas être résolu en temps 2o(k) ·nO(1)

en supposant ETH. Pour les autres paramètres, on sait grâce à [18, 120] qu’on peut résoudre
chaque problème de (σ, ρ)-domination en temps 2O(k log(k)) · nO(1), 2O(k2) · nO(1) et nO(k) quand
k est, respectivement, la largeur de Q-rang, la largeur de rang et la largeur de couplage induit.
Cependant, nous n’avons pas sous ETH de bornes inférieures serrées pour ces largeurs.

A contrario, les problèmes incorporant une contrainte globale – e.g., connexité ou acyclicité
– sont beaucoup plus durs à apprivoiser avec des largeurs. Parmi ces problèmes, on retrouve des
classiques comme Hamiltonian Cycle, Connected Vertex Cover et Feedback Vertex
Set. Notre connaissance sur la complexité de ces problèmes paramétrés par les largeurs était
assez limitée même pour la largeur arborescente. Pendant un moment, la plupart des informati-
ciens pensaient que pour nombre de ces problèmes, les algorithmes naïfs en temps kO(k) ·n, avec
k la largeur arborescente du graphe, ne pouvait être améliorés. En effet, il semblait nécessaire
de connaître les composantes connexes des solutions partielles dans l’optique de les mettre à
jour et d’assurer la connexité de la solution calculée. Algorithmiquement, à chaque sac de la
décomposition arborée, les composantes connexes des solutions partielles sont représentées par
des partitions sur les k sommets du sac. Conserver toutes les partitions de k éléments possibles
conduit inévitablement à un temps d’exécution de kO(k) · n.

Mais étonnamment, en 2011, Cygan et al. ont démontré [38] qu’il existait des algorithmes
Monte Carlo s’exécutant en temps 2O(k) · nO(1) pour une grande variété de problèmes avec une
contrainte globale tel que Connected Dominating Set, Hamiltonian Cycle et Feedback
Vertex Set. Pour obtenir ces algorithmes, Cygan et al. introduisent une technique appelée Cut
& Count. On explique les grandes idées de cette technique dans la Section 4.3. Les principaux
inconvénients des algorithmes obtenus avec cette approche sont les suivants : ils ne sont pas
déterministes, leurs dépendances dans le nombre de sommets du graphe n’est pas linéaire et
leurs dépendances par rapport aux poids des sommets ou des arrêtes est pseudo-polynomiale.

En 2013, Bodlaender et al. ont proposé dans [9] une approche générale appelée rank-based
approach pour créer des algorithmes déterministes en temps 2O(k) · n pour une plus grande
variété de problèmes. Les algorithmes obtenus avec la rank-based approach ne souffrent pas des
inconvénients de ceux obtenus avec l’approche Cut & Count. La principale contribution de [9] a
été de prouver qu’à partir d’un ensemble de solutions partielles A, on pouvait calculer, en temps
|A| · 2O(k), un sous-ensemble B de A de taille 2k−1 et qui représente A. Ainsi, pour résoudre un
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problème de connectivité, on peut se contenter de manipuler des ensembles de solutions partielles
de taille 2O(k). Pour prouver cela, étant donné un ensemble de solutions partielles A associé à
un sac B, les auteurs définissent une matrice binaire M tel que :

• les lignes de M correspondent aux partitions de {1, . . . , k} représentant les composantes
connexes des solutions partielles dans A,

• les colonnes de M correspondent à toutes les partitions de {1, . . . , k} et représentent toutes
les manières de connecter les sommets dans le sac B,

• M[p, q] = 1 si et seulement si la « fusion » de p et de q égale {{1, . . . , k}}, i.e., cette fusion
représente une solution connectée.

Bodlaender et al. ont démontré que le rang de M est borné par 2k−1; de plus, une base
de poids maximum (ou minimum si on cherche à minimiser) générant les lignes de M peut
être calculée en temps |A| · 2O(k) et correspond à un représentant de A. Nous donnons plus
d’explications sur cette approche dans les Sections 4.1 et 4.2. En plus de son indéniable intérêt
théorique, la rank-based approach est intéressante en pratique [50].

Il est assez naturel de se demander si on peut adapter ces approches aux autres largeurs.
Instinctivement, on a commencé à étudier cette question avec la largeur de clique car cette
dernière est plus facile à manipuler que les autres. À ce moment là, notre connaissance sur la
complexité des problèmes avec une contrainte globale paramétrés par la largeur de clique était
encore plus incomplète que pour la largeur arborescente avant l’introduction du Cut & Count.
Quelques problèmes comme Connected Dominating Set et Connected Vertex Cover
étaient connus pour être FPT paramétrés par la largeur de clique car ils sont exprimables en
MSO1. Cependant, nous n’avions pas d’idée précise sur leurs complexités paramétrées en dehors
de certains cas spéciaux comme Feedback Vertex Set qu’on peut résoudre en temps kO(k) ·
nO(1) en supposant qu’une k-expression est donnée [16]. Similairement à la largeur arborescente,
les meilleures bornes inférieures pour ces problèmes stipulent qu’on ne peut les résoudre en temps
2o(k) · nO(1) en supposant ETH.

Dans la Section 4.1, nous démontrons qu’on peut adapter la rank-based approach à la largeur
de clique. Nous nous concentrons sur les variantes connexes des problèmes de (σ, ρ)-domination
(on demande à la solution ou à son complément d’induire un graphe connexe), e.g., Connected
Dominating Set et Connected Vertex Cover. Il n’est pas difficile de modifier l’algorithme
de [18] pour les problème de (σ, ρ)-domination afin de résoudre leurs variantes connexes en temps
kO(k) · nO(1). En effet, il suffit de garder une solution partielle pour chaque partition des labels
possible correspond à la façon dont le graphe induit par cette solution partielle connecte ces
classes de labels. On peut modifier légèrement cet algorithme naïf et prouver qu’on peut calculer
à chaque étape, un représentant de taille 2O(k) pour obtenir un algorithme s’exécutant en temps
2O(k) · n.

Nous considérons aussi le problème Feedback Vertex Set, qui demande le calcul d’un
ensemble de sommet de poids minimum à enlever pour obtenir un graphe acyclique. Nous
démontrons qu’on peut résoudre ce problème en temps 2O(k) · n. Même si notre algorithme est
dans le même esprit que celui pour les variantes connexes des problèmes de (σ, ρ)-domination, il
est beaucoup moins trivial car on doit gérer l’acyclicité. Ceci est dû au fait qu’avec les opérations
de la largeur de clique, une multitude d’arêtes peuvent être ajoutées à la fois. Ainsi, contrairement
à la largeur arborescente, à chaque étape de calcul, le nombre de sommets ayant un voisinage
dans le reste du graphe n’est pas borné.

Dans nos deux algorithmes, nous utilisons la même approche que [9], mais pour Feedback
Vertex Set, nous devons adapter celle-ci pour gérer l’acyclicité. Contrairement à [9], nous
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ne pouvons pas garantir l’acyclicité en comptant le nombre d’arêtes induites par les solutions
partielles. Dans notre cas, utiliser cette astuce, nous conduirait à un temps d’exécution de nO(k)

(on explique pourquoi dans la Section 4.1).

Dans la Section 4.2, nous généralisons et étendons les résultats obtenus pour la largeur de
clique aux largeurs de (Q-)rang et de couplage induit. Nous étendons aussi la classe de problèmes
étudiés en y incluant les variantes acycliques (ou acycliques et connexes) des problèmes de
(σ, ρ)-domination, où on demande aux solutions d’induire un graphe acyclique (ou un arbre).
Parmi ces problèmes, on retrouve des classiques comme Maximum Induced Tree et Longest
Induced Path. Nous obtenons des algorithmes rapides pour résoudre toutes ces variantes de
problèmes de (σ, ρ)-domination, avec les largeurs de clique, de (Q-)rang et de couplage induit.
Les temps d’exécution de ces algorithmes sont présentés dans la Table 1. À une constante
prés dans les exposants, ces temps d’exécutions sont équivalents aux temps d’exécutions des
meilleurs algorithmes connus pour les problèmes de (σ, ρ)-domination dans [18, 120], même pour
des problèmes très basiques comme Independent Set et Dominating Set. Pour la largeur
de clique, cela prouve que rajouter une contrainte de connexité ou d’acyclicité à ces problèmes
n’ajoute pas de grande difficulté. Pour les autres largeurs, cela semble être également le cas mais
nous ne pouvons confirmer cette intuition sans de meilleures bornes inférieures.

Table 1: Temps d’exécution de nos algorithmes pour les différentes largeurs, ici n est le nombre
de sommets du graphe en entrée et k la largeur de la décomposition en entrée.

Clique-width Rank-width Q-rank-width Mim-width

2O(k) · nO(1) 2O(k2) · nO(1) 2O(k log(k)) · nO(1) nO(k)

Pour obtenir ces algorithmes, nous généralisons et simplifions la rank-based approach de [9].
Pour y arriver, nous utilisons la notion de d-voisins équivalence. Ce concept a été introduit dans
[18] et utilisé dans [18, 120] pour obtenir les meilleurs algorithmes connus pour les problèmes
de (σ, ρ)-domination paramétrés par les largeurs de clique, de (Q-)rang et de couplage induit.
Formellement, étant donné A ⊆ V (G) et d ∈ N \ {0}, deux ensembles X,Y ⊆ A sont d-voisins
équivalents envers A si, pour chaque sommet v de V (G) \ A, nous avons min(d, |N(v) ∩X|) =
min(d, |N(v) ∩ Y |) où N(v) est le voisinage de v dans G. Il est assez simple de vérifier que
c’est une relation d’équivalence, et si d = 1, alors celle relation mesure le nombre de voisinages
différents dans V (G) \A générés par les sous-ensembles de A.

Dans la Section 4.2, nous utilisons une largeur définie à partir de la relation de d-voisinage
appelée la largeur de d-voisins. Cette dernière correspond à la s-necd-largeur où s-necd(A) est le
maximum entre necd(A) et necd(A \ V (G)) avec necd(B), le nombre de classes d’équivalence de
la d-voisins équivalence sur B. Notons que la largeur booléenne introduite dans [17] correspond
au logarithme binaire de la largeur de 1-voisins.

Similairement à [18] pour les problèmes de (σ, ρ)-domination, nous prouvons qu’on peut
résoudre leurs variantes connexes en temps polynomial en n et en la largeur de d-voisins d’un
arbuste donné en entrée, avec d une constante ne dépendant que de σ et de ρ. Les temps
d’exécutions obtenus dans la Table 1 proviennent du fait que la largeur de d-voisins d’un ar-
buste L est bornée par (d+ 1)mw, 2rwQ log(d·rwQ+1), 2d·rw2 , et nd·mim où mw, rwQ, rw et mim sont,
respectivement, les largeurs de module (une largeur équivalent à la largeur de clique), de Q-
rang, de rang et de couplage induit de L. Jusqu’à maintenant la d-voisins équivalence n’avait été
utilisée que pour des problèmes avec des contraintes locales [18, 73, 120]. Étonnamment, nous
prouvons qu’elle peut être utilisée pour les variantes connexes des ces problèmes. Cela démontre
l’importance et la transversalité de la largeur de d-voisins concernant les largeurs de clique, de
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(Q-)rang et de couplage induit.
Malheureusement, pour les variantes acycliques (ou acyclique et connexe) nous n’avons pas

réussi à obtenir un algorithme en temps polynomial en n et en la largeur de d-voisins pour une
certaine constante d. Malgré le fait, que les algorithmes que nous obtenons pour ces problèmes
s’appuient énormément la largeur de d-voisins, à un moment, nous avons dû utiliser les propriétés
des autres largeurs pour obtenir les temps d’exécution présentés dans la Table 1.

Les algorithmes que nous présentons dans la Section 4.2 généralisent et unifient de nombreux
résultats dont notamment la rank-based approach de [9]. En effet, notre approche peut être
utilisée pour résoudre en temps 2O(k) · n tous les problèmes que nous considérons, avec k la
largeur arborescente du graphe en entrée. Ceci est dû au fait que si un ensemble de sommets S
est un séparateur de taille k, alors s-necd(S) ≤ (d+ 1)k.

De plus, les algorithmes présentés dans la Section 4.2 sont plus simples que ceux présentés
dans [9] et dans la Section 4.1. Cela est dû principalement au fait que nous évitons d’utiliser
des partitions pondérées pour représenter nos solutions partielles. Ceci simplifie grandement
les opérations utilisées par les algorithmes, les étapes de calculs et les preuves. En particulier,
l’utilisation de partitions pondérées pour représenter les solutions partielles dans la Section 4.1
implique de prendre soin de nombreux détails techniques concernant l’acyclicité. Notre approche
simplifie l’algorithme pour Feedback Vertex Set paramétré par la largeur de rang de Ganian
et Hliněný [65] et les algorithmes paramétrés par la largeur de couplage induit de Jaffke, Kwon
et Telle pour Longest Induced Path [85] et Feedback Vertex Set [86].

Dans la Section 4.3, nous démontrons que la portée de nos idées n’est pas limitée à la rank-
based approach. Nous prouvons qu’on peut utiliser les mêmes idées à l’approche Cut & Count
pour obtenir un algorithme Monte Carlo pour les variantes connexes de problèmes de (σ, ρ)-
domination. Ceci montre la généralité de nos idées et permet d’envisager de les appliquer à
d’autres types de problèmes et d’autres approches.

Vous avez peut-être remarqué que nos généralisations de la rank-based approach et du Cut
& Count ne s’appliquent pas à tous les problèmes considérés dans [9, 38]. C’est le cas pour
les problèmes Steiner Tree et Hamiltonian Cycle. En fait, le problème Steiner Tree
est NP-difficile dans les cliques et donc dans les graphes de largeurs de clique 2. Cependant, sa
variante où les poids sont sur les sommets et non sur les arêtes correspond à la variante connexe
d’un problème de (σ, ρ)-domination et ainsi cette variante fait parti des problèmes considérées
dans les Sections 4.1 et 4.2.

De son coté, le problème Hamiltonian Cycle5 n’est pas la variante d’un problème de
(σ, ρ)-domination. En fait, ce problème est connu pour être exprimable en MSO2 mais pas en
MSO1. C’est aussi le cas pour d’autres problèmes tout aussi classiques tels que Edge Dominat-
ing Set, Graph Coloring et Max Cut. Ces quatre problèmes sont connus pour être FPT
paramétrés par la largeur arborescente grâce au théorème de Courcelle [29] et à ses variantes
[3, 13]. Paramétrés par la largeur de clique, on sait qu’ils sont tous les quatre XP [49, 100].
Dans de nombreux papiers [71, 99, 100, 106], les auteurs se demandèrent si il existait pour ces
problèmes des d’algorithmes FPT paramétrés par la largeur de clique. Fomin, Golovach, Loksh-
tanov et Saurabh [58] prouvèrent que les problèmes Edge Dominating Set, Graph Coloring
et Hamiltonian Cycle sont W[1]-difficiles paramétrés par la largeur de clique. En 2014, les
même auteurs [59] prouvèrent que Edge Dominating Set et Max Cut pouvaient être résolus
en temps nO(k), à partir d’une k-expression, mais qu’on ne pouvait pas les résoudre en temps
no(k) en supposant ETH. Dans la conclusion de [59], les auteurs affirment qu’en supposant ETH,
on ne peut pas résoudre Hamiltonian Cycle en temps no(k) (ce résultat est prouvé dans [60]).

5Voir la Section 1.4 pour la définition du problème Hamiltonian Cycle.
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Cependant, les auteurs ne purent pas prouver qu’on pouvait résoudre Hamiltonian Cycle en
temps nO(k). À l’époque, les meilleurs algorithmes pour Hamiltonian Cycle et Graph Col-
oring s’exécutaient, respectivement, en temps nO(k2) [49] et n2O(k) [100]. Récemment, Golovach
et al. [74] ont prouvé qu’étonnamment Graph Coloring ne pouvait pas être résolu en temps
n2o(k) en supposant ETH.

Dans la Section 4.4, nous prouvons qu’on peut résoudre Hamiltonian Cycle en temps
nO(k) à partir d’une k-expression. Notre algorithme utilise une équivalence entre l’existence
d’un cycle Hamiltonien dans un graphe et l’existence d’une marche Eulérienne qui utilise des
arêtes de couleurs différentes alternativement dans un multigraphe dont les arêtes sont colorées
avec deux couleurs. L’idée essentielle est que dans un tel multigraphe, l’existence d’une marche
Eulérienne « alternante » peut être déterminée par les informations suivantes : le nombre d’arêtes
colorée incidentes à chaque sommets et la connexité du multigraphe. Avec ces idées, nous évitons
l’obstacle majeur de l’algorithme naïf dans [49] qui garde tous les multigraphes possibles sur k
sommets et avec au plus n arêtes.

Grâce à notre résultat, nous avons maintenant une idée précise de la complexité des problèmes
classiques qui sont W[1]-difficiles paramétrés par la largeur de clique. Même si notre approche
semble assez ad hoc à première vue, elle pourrait nous aider à étendre le champ d’application
de l’approche que nous avons créée pour les variantes de problèmes de (σ, ρ)-domination.

Jusqu’à maintenant, nous n’avons parlé que de problèmes d’optimisation ou de décision. La
grande majorité des problèmes étudiés à travers la complexité paramétrée concerne ces deux
types de problèmes. Laissés derrière pendant un moment, les problèmes de comptage reçoivent
de plus en plus d’attention de la part de la communauté [9, 36, 57, 73]. Tandis qu’un problème
de décision demande si il existe une solution, un problème de comptage demande le nombre de
solutions. Ainsi, la variante de comptage d’un problème de décision NP-difficile est au moins
aussi difficile que ce dernier. A contrario, si un problème de décision est dans P, sa variante de
comptage n’admet pas nécessairement d’algorithme en temps polynomial [130].

À l’instar des problèmes de décision, il existe pour les problèmes de comptage deux classes de
complexité jouant le même rôle que P et NP. L’ensemble des problèmes de comptage qu’on peut
résoudre en temps polynomial est dénoté par FP (pour Functional P). Valiant [130] introduisit
la classe de complexité #P l’analogue de NP pour les problèmes de comptage. Intuitivement,
#P désigne l’ensemble des fonctions qui correspondent aux nombre de chemins acceptants d’une
machine de Turing non-déterministe. En supposant #P ̸= FP, on peut s’intéresser à classifier
les problèmes de comptage entre ceux qui sont faciles à résoudre, i.e., qui appartiennent à FP,
et ceux qui sont difficiles, c’est à dire #P-difficiles [130] ou même difficiles à approximer [72].

La variante de comptage d’un problème de décision peut être beaucoup plus difficile que ce
dernier. Par exemple, décider si un graphe admet un couplage parfait est décidable en temps
polynomial tandis que compter le nombre de couplages parfaits d’un graphe est #P-difficile
même dans les graphes bipartis [130]. Dans le même esprit, décider si une formule 2-SAT admet
un modèle est un problème dans P alors que sa variante de comptage est #P-difficile [131].

Il est assez naturel d’étudier les problèmes de comptage avec la boite à outils fournie par
la complexité paramétrée. Dans la Section 5.1, nous donnons une vue d’ensemble des résultats
obtenus sur le comptage avec les largeurs.

Cependant, il reste énormément de zones d’ombre, les largeurs qu’on connaît ne parviennent
pas à expliquer tous les résultats d’appartenance dans P et FP quand on restreint les instances
à certaines classes de graphes. Ceci est particulièrement vrai pour les problèmes de comptage
dont la variante de décision est facile. Par exemple, compter le nombre de vertex covers est
#P-difficile en général mais restreint aux graphes cordaux, ce problème appartient à FP [112].
Or aucune largeur qu’on connaît et qui est bornée dans les graphes cordaux n’arrive à expliquer
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ce résultat. Par conséquent, il faut découvrir de nouvelles largeurs et pour ce faire, nous devons
améliorer notre compréhension de ces classes de graphes et des problèmes qu’on peut résoudre
en temps polynomial sur ces classes.

Dans cette optique, nous démontrons, dans le Chapitre 5, plusieurs résultats sur la com-
plexité classique de problèmes de comptage. Notre principal sujet d’étude est le comptage
des transversaux minimaux dans les hypergraphes. Un hypergraphe est une collection de sous-
ensembles – appelés hyper-arêtes – d’un ensemble fini d’éléments appelés sommets. Les hyper-
graphes généralisent la notion de graphes car un graphe est un hypergraphe dont les hyper-
arêtes sont de taille 2. Un transversal est un ensemble de sommets qui intersecte toutes les
hyper-arêtes de l’hypergraphe. Le comptage des transversaux minimaux est intimement lié au
problème d’énumération des transversaux minimaux. Ce problème d’énumération a énormément
d’applications dans de nombreux domaines [47]. Malgré des décennies de recherche intensives,
on ne sait toujours pas si on peut le résoudre en temps polynomial en la taille de l’instance et
du nombre de solutions. Compter les transversaux minimaux a également de nombreuses appli-
cations dans des domaines variés comme dans le model checking [44]. Ce problème a également
un intérêt en théorie des graphes car il est intimement proche du comptage des dominants mini-
maux dans les graphes. Ces deux problèmes de comptage se révèlent être #P-difficiles en général.
Cependant, la littérature regorge de résultats [20, 73, 94] démontrant qu’on peut résoudre ces
problèmes en se restreignant à certaines classes de graphes ou d’hypergraphes.

Les hypergraphes sont connus pour être plus compliqués à manipuler que les graphes, même
des notions basiques comme l’acyclicité ne sont pas triviale à définir dans les hypergraphes. En
fait, plusieurs notions d’acyclicité coexistent [20]. Similairement, il existe différentes notions de
largeurs pour les hypergraphes qui ont été introduites pour généraliser la largeur arborescente
[77, 78]. À notre connaissance, personne n’a pu utiliser ces largeurs d’hypergraphes pour créer
un algorithme FPT ou XP pour résoudre un problème NP-difficile ou #P-difficile. En fait, les
largeurs d’hypergraphes qu’on connaît sont soit trop dures à manipuler, soit elles sont trop
générales, i.e., bornées dans des instances difficiles.

Dans la Section 5.2, nous prouvons qu’on peut compter en temps polynomial les transver-
saux minimaux des hypergraphes β-acycliques. La β-acyclicité est une des notions généralisant
l’acyclicité des graphes aux hypergraphes. En corollaire, nous déduisons qu’on peut compter en
temps polynomial le nombre de dominant minimaux dans les graphes fortement cordaux, une
classe de graphes où même la largeur de couplage induit n’est pas bornée. Le comptage des
dominants minimaux dans les graphes cordaux est connu pour être #P-difficile [96]. Ces deux
résultats offrent de prometteuses pistes pouvant mener à la découverte de nouvelles largeurs de
graphes et d’hypergraphes intéressantes.
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Introduction

The needs of efficient algorithms to solve real-world problems never ceased to increase since the
construction of the first computers in the forties. This leads researchers to study the complexity
of problems, i.e., the minimal amounts of resources – such as time and memory – a computer
needs to solve a problem. It quickly became clear that all problems are not equally hard to solve.
For example, computing the greatest common divisor of two integers can be done in a few steps
of computation (Euclid’s algorithm), while finding the divisors of an integer needs, apparently,
much more time and memory to be computed. Despite decades of research, no one was able to
find efficient algorithms for many interesting problems or to rule out the existence of efficient
algorithms for these problems. Nevertheless, one can characterize the hardness of problems by
comparing their relative complexity. For example, given the divisors of two integers a and b, we
can easily find the greatest common divisor of a and b, hence finding the divisors of an integer
is at least as hard as finding the greatest common divisor of two integers. This approach turned
out to be successful for classifying the problems with respect to their relative complexity.

The most famous classification was due to the theory of NP-completeness introduced inde-
pendently by Cook [25] and Levin [104] in the early seventies. Informally, a problem is in the
class NP if it can be formulated as a yes-no question of the input value and the instances where
the answer is “yes” have efficiently verifiable proofs. The Traveling Salesman Problem is
a typical example of hard problem in NP. This problem asks, given an integer L, a list of cities
and the distances between each pair of cities, whether there exists a route of length at most L
that visits each city and returns to the origin city. This problem is in NP since it is quite easy
given a route to check whether its length is smaller than L. Despite its apparent simplicity, no
one was able to find an efficient algorithm for this problem. In fact, the Traveling Salesman
Problem has a surprising property: it is NP-hard [97], meaning that it is at least as hard as any
problem in NP. That is, the existence of an efficient algorithm for the Traveling Salesman
Problem implies that every problem in NP admits an efficient algorithm. Thousands of inter-
esting problems turned out to be NP-hard [68, 97] and none of them seems to admit an efficient
algorithm. This leads researchers to conjecture that P ̸= NP where P is the class of problems
in NP that admit an algorithm whose running time is polynomial in the input size. Proving or
refuting this conjecture is one of the most important open problems in computer science [63].

At first glance, P ̸= NP may seem to be an insurmountable wall and the study of NP-
hard problems may look like a dead-end. On the other hand, NP-hard problems have tons of
applications in practice, we cannot just ignore them and pretend they do not exist. For instance,
the Traveling Salesman Problem has several applications in transportation but also in
planning, logistics, manufacture of microchips, DNA sequencing, etc. [107].

In spite of their theoretical hardness, in practice, efficient softwares such as SAT-solvers [87]
have been developed for handling some NP-hard problems. Of course, this does not prove that
P = NP as these tools do not solve quickly all instances of an NP-hard problem. The good
performances of these software in practice can be partially explained by the fact that real inputs
are not arbitrary. That is, these real-world instances have a lots of hidden structures which
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explain why they are easy to solve [52, 53]. For example, a real instance of the Traveling
Salesman Problem may consist in a set of existing cities joined by a road network. An
algorithm for this problem could use the fact that human networks are very structured and
constructed to optimize transportation. In the last decades, considerable efforts have been spent
to characterize these hidden structures and to use them in order to design efficient algorithms.

A successful approach in this line of research is the theory of parameterized complexity in-
troduced by Downey and Fellows [42] in the nineties. In this framework, the complexity of a
problem is not measured only in terms of the input size, but also in terms of a parameter on the
input. This additional dimension allows the classification of NP-hard problems on a finer scale
than in the classical complexity theory. During the 30 years of its existence, the area has trans-
formed into a mainstream topic of theoretical computer science with thousands of papers and
three recent books [10, 37, 43]. Formally, a parameterized problem is a problem whose instances
are associated with a numerical value called parameter. A given problem can be parameterized
by a multitude of different parameters. The choice of a parameter has a great impact on the
complexity of the problem. Let us define and comment, briefly, some of the most important
concepts in parameterized complexity.

• A parameterized problem is FPT if it admits an algorithm – called FPT algorithm – running
in time f(k) ·nO(1) with n the input size, k the parameter, and f a function. Typically, one
goal in parameterized complexity is to design FPT algorithms, trying to make both f(k)
and the exponent of n as small as possible. If a parameterized problem is FPT, then the
problem is easy to solve for all instances where the parameter value is small. Additionally to
their theoretical interests, FPT algorithms have practical applications [24, 50, 53, 102, 103].

• A parameterized problem is XP if it admits an algorithm – called XP algorithm – running
in time f(k) · ng(k) with f and g two functions, n the input size, and k the parameter.
Observe that a problem is XP if it can be solved in polynomial time on every instance
where the parameter value is fixed. Unlike FPT, the interest on XP is mostly theoretical
since an XP algorithm is significantly less efficient than an FPT algorithm [52]. While every
FPT parameterized problem is XP by definition, it is conjectured that some XP problems
are not FPT. To support this conjecture, Downey and Fellows [41] define a class of XP
problems called W[1]. It is conjectured that FPT ̸= W[1], i.e., the problems in W[1] are
not FPT. Assuming FPT ̸= W[1] is almost as reasonable as assuming P ̸= NP; in fact,
the two conjectures have a lot in common [52]. Similarly to polynomial reductions, there
exists a notion of reduction between parameterized problems to prove that a parameterized
problem is W[1]-hard (analog of NP-hard) and thus unlikely to be FPT.

Additionally to these concepts, parameterized complexity theory provides plenty of tech-
niques to design efficient algorithms. It also provides tools to establish conditional lower bounds
on the complexity of problems such as W[1]-hardness [37]. An important part of this thesis con-
sists in designing efficient FPT and XP algorithms. Some of our algorithms are asymptotically
optimal under a reasonable complexity assumption called Exponential Time Hypothesis (ETH
for short). This complexity assumption was introduced in 2001 by Impagliazzo and Paturi in
[82]. Roughly speaking, ETH states that the 3-SAT problem cannot be solved in time 2o(n) with
n the number of variables. Under ETH, one can prove lower bounds on the classical complexities
of NP-hard problems but also on their parameterized complexities.

The vast majority of results obtained through the parameterized complexity toolbox are
closely related to graphs. A graph is a data structure that models a binary relation between
entities. Formally, a graph is an ordered pair G = (V (G), E(G)) comprising a set V of elements,
called vertices, together with a set E of unordered pairs of vertices called edges. Despite their
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simplicity, graphs can model a huge amount of concepts. We use graphs in many areas, in com-
puter science but also in biology, chemistry, physic, economics, electrical engineering, industry,
etc. For instance, graphs excel at modeling any kind of network such as friendship relations
between people or a road network by identifying crossroads as vertices and roads as edges.

Graphs offer a wide spectrum of interesting parameters such as the maximum degree (the
largest number of neighbors of a vertex), the diameter (the largest distance between two vertices),
the degeneracy, the genus, etc. It comes with no surprise that graphs make a fertile ground for
many results in parameterized complexity theory, even for studying problems which are not
directly related to graphs such as AI problems [20, 79, 113].

One of the most well-studied graph parameters is tree-width. The concept of tree-width was
rediscovered several times in different settings, in particular, by Robertson and Seymour [126] in
their monumental Graph Minors project. Intuitively, tree-width measures how close a graph is
to the topological structure of a tree. More precisely, a graph has tree-width at most k if it can
be represented by a structural decomposition (called tree decomposition) into vertex sets of size
k (called bags) that are connected in a tree-like fashion. It appears that tree-width has numerous
structural properties and algorithmic applications, see [8] for a survey. A celebrated algorith-
mic meta-theorem by Courcelle [29] states that every graph problem expressible in monadic
second-order logic (MSO2) can be decided in time f(k) · n on an n-vertex graph given with a
tree-decomposition of tree-width k. Another celebrated result proved by Bodlaender [7] states
that an optimal tree-decomposition of a graph can be computed in time f(k) · n. Consequently,
Courcelle’s Theorem and Bodlaender’s algorithm prove that a huge number of problems are FPT
parameterized by tree-width and that they are solvable in linear time on graphs of bounded tree-
width. Among these problems, there are some well-studied and well-known NP-hard problems
such as Dominating Set, Hamiltonian Cycle, and 3-Coloring. However, the FPT al-
gorithms we obtain through Courcelle’s meta-theorem have a huge dependency on tree-width.
Many efforts have been spent to design better FPT algorithms. These efforts lead to the creation
of fruitful techniques to obtain efficient algorithms. Nowadays, for many NP-hard problems, we
have an FPT algorithm parameterized by tree-width whose dependency on tree-width is optimal
under ETH.

Nevertheless, despite the broad interest on tree-width, only sparse graph classes can have
bounded tree-width. But many NP-hard problems are tractable on dense graph classes. Most
of the time, this tractability can be explained by the ability of these graphs to be recursively
decomposable along vertex bipartitions (A,B) where the adjacency between A and B has a
simple structure. A lot of graph parameters – called width measures – have been defined to
characterize this ability, the most remarkable ones are certainly clique-width [35], rank-width
[116], boolean-width [17], and maximum induced matching width (called mim-width) [132]. In
this thesis, we study the algorithmic properties of these width measures.

Let us explain how these width measures are defined. Clique-width is defined in terms of the
following graph operations: (1) addition of a single vertex labeled i ∈ N, (2) renaming label i
into j, (3) addition of edges between vertices labeled i and those labeled j, (4) disjoint union.
The clique-width of a graph is the minimum number of labels needed to construct it, and the
expressions constructing a graph with at most k labels are called k-expressions.

Rank-width, mim-width, and many other width measures are obtained through the notion
of rooted layout. A rooted layout of a graph G is a pair (T, δ) where T is a rooted tree and δ is
a bijection between the leaves of T and the vertices of G. Every node x of T is associated with
a vertex set Vx of G which are the vertices of G in bijection with the leaves of T that are the
descendants of x. Given a set function f : 2V (G) → N, one can associate with each rooted layout
(T, δ) a measure, called usually f-width, defined as the maximum f(Vx) over all the nodes x of
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T . The f-width of G is the minimum f-width over all rooted layouts of G.
For instance, rank-width is defined from the function f(A) which corresponds to the rank

over GF (2) of the adjacency matrix between the vertex sets A and V (G)\A; if we take the rank
over Q, we obtain a useful variant of rank-width introduced in [120], called Q-rank-with. For
mim-width, f(A) is the maximum size of an induced matching in the bipartite graph associated
with (A, V (G)\A). See Figure 2 for an example of a rooted layout (T, δ) of a graph G. Notice that
the rank-width and the Q-rank-width of (T, δ) equal 2 and this is optimal, i.e., the rank-width
and Q-rank-width of G is 2. The mim-width of (T, δ) is 2 because {v2v3, v4v5} is an induced
matching of the bipartite graph associated with Vi and V (G) \ Vi. However, this is not optimal
as one can find a rooted layout of G of mim-width 1.
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v5
r

δ(v2) = a
δ(v5) = b

δ(v1) = d

δ(v3) = e

δ(v4) = f
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i

g

(a) A graph G.

(b) A layout (T, δ) of G.

v2 v5

v1 v4v3

V (G) \ Vi

Vi

(c) Bipartite graph associated
with (Vi, V (G) \ Vi).


v2 v5

v1 1 1
v3 1 0
v4 0 1


(d) Adjacency matrix between

Vi and V (G) \ Vi.

Figure 2: Subfigure (a) shows a graph G. Subfigure (b) shows a layout (T, δ) of G with r as root
of T . Observe that the vertex set associated with the node i is Vi := {v1, v3, v4}. Subfigures (c)
and (d) show, respectively, the bipartite graph and the adjacency matrix associated with the
vertex sets Vi and V (G) \ Vi.

The notions of tree-decomposition, k-expression, and rooted layout are particularly suited to
design fast dynamic programming algorithms for NP-hard problems. Let us explain the gen-
eral ideas used to design such algorithms on rooted layouts (the same ideas hold for tree-
decompositions and k-expressions). Suppose that we want to find a vertex subset of maximum
size that satisfies some property P in a graph G. For doing so, we dispose of a rooted layout
(T, δ) of G of small f-width for some set function f. We will solve this problem by doing a
bottom-up traversal of T and at each node x of T , we will compute a set of partial solutions.
As we seek a vertex subset, the partial solutions associated with a node x of T are subsets of
Vx. The main idea is to compute, for each node x of T , a small set of partial solutions Sx that
represents 2Vx , i.e., for every X ⊆ Vx and every Y ⊆ V (G) \ Vx, if X ∪ Y satisfies P, then there
exists X ′ ∈ Sx such that X ′ ∪Y satisfies P and |X ′| ≥ |X|. With this notion of representativity,
the set computed for the root of T must contain a set of maximum size that satisfies P in G,
assuming that such a set exists. Most of the dynamic programming algorithms are based on this
concept of representativity, and proposing a fast algorithm is usually reduced to finding a way of
computing small representative sets. Typically, this is done by defining an equivalence relation
∼ on 2Vx with “few” equivalence classes and such that X ∼ W if, for all Y ⊆ V (G) \ Vx, we
have X ∪ Y satisfies P if and only if W ∪ Y satisfies P. To design an FPT (resp. XP) algorithm,
the number N of equivalence classes of ∼ and the time T to decide whether X ∼ W must be
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bounded by f(k) · nO(1) (resp. f(k) · ng(k)) with k the f-width of (T, δ) and f, g some functions.
This way, given any representative set S⋆

x of 2Vx , we can compute in time |S⋆
x| ·N · T a set Sx of

size N that represents 2Vx by taking a set of maximum size in each equivalence class of ∼ over
S⋆
x.

In order to compute the sets Sx, for each node x of T , we start by computing them for each
leaf x of T , this is quite easy since |Vx| = 1. For every internal node x of T with two children a
and b, we compute Sx from Sa and Sb. Typically, we compute a set of partial solutions S⋆

x of size
at most N2 and in time N2 · nO(1), by taking the partial solutions of x obtained by the union
of a set in Sa and one in Sb. Normally, it is easy to prove that S⋆

x represents 2Vx from the fact
that Sa and Sb represent, respectively, 2Va and 2Vb . Observe that computing Sx from S⋆

x can be
done in time N2 ·T from the above explanations. As a layout has 2n− 1 nodes, these ideas lead
to an O(N2 · T · n) time algorithm.

There are three important aspects to consider when studying and comparing width measures.

(a) The parameterized complexity of computing a decomposition and the width of this de-
composition with respect to the width of the input graph.

(b) The graph classes where this width is bounded.

(c) How fast we can solve NP-hard problems with a given decomposition.

Aspect (a) should be considered as a precomputation step since once a rooted layout is computed,
we can use it to solve quickly many problems. Unfortunately, for all the width measures we deal
with in this thesis and tree-width, computing an optimal decomposition is an NP-hard problem.
However, for tree-width, rank-width and Q-rank-width, there exist “efficient” FPT algorithms
that, given a graph G, compute a corresponding decomposition of width that is within a constant
factor from the width of G. On the other hand, all the algorithms parameterized by clique-width
(or mim-width) require that a k-expression (resp. a rooted layout) is given as input. Indeed, it is
not known whether the clique-width (respectively mim-width) of a graph can be approximated
within a constant factor by an FPT or XP algorithm. We give an overview of this aspect in
Section 2.5.

Aspect (b) is crucial. Indeed, even if the width of the computed decomposition is within a
constant factor from the width of a graph, this latter may be huge, i.e., close to the number of
vertices. It is primordial to compare width measures on this aspect because two width measures
could have algorithms with the same running time but the values of these two width measures
on the input graph could differ greatly.

For instance, the modeling power of clique-width is strictly stronger than the modeling power
of tree-width. In other words, if a graph class has bounded tree-width, then it has bounded
clique-width [35], but the converse is false as cliques have clique-width at most 2 and unbounded
tree-width. Rank-width and Q-rank-width have the same modeling power as clique-width, i.e.,
a graph has bounded (Q-)rank-width if and only if it has bounded clique-width, but the clique-
width of a graph can be exponentially bigger than its (Q-)rank-width. In contrast, mim-width has
the strongest modeling power among all these width measures and is even bounded on interval
graphs and permutation graphs [5, 76] where the other complexity measures are unbounded.

Intuitively, the stronger the modeling power of a parameter is, the harder it will be to design
efficient algorithms for this parameter. Comparing the modeling power of these width measures
is quite useful since if a width measure p has a stronger modeling power than a width measure
p⋆, then:

• if a problem P parameterized by p is FPT, then P is FPT parameterized by p⋆ and
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• if a problem P ′ is W[1]-hard parameterized by p⋆, then P ′ is W[1]-hard parameterized by
p.

For instance, a problem is FPT parameterized by clique-width if and only if it is FPT parameter-
ized by (Q-)rank-width. However, even if two parameters have the same modeling power, it does
not mean that they have the same properties or that the best algorithm for one will also give
the best algorithm for the other. From what we said, rank-width seems to overcome clique-width
both on Aspects (a) and (b) but this superiority has a price on Aspect (c): rank-width is harder
to manipulate than clique-width when it comes to solve problems. In Sections 2.3, we give an
overview of the known relations between the values of these parameters on graphs. Section 2.4
gives an overview of the well-known graph classes where the value of one of these parameters is
bounded.

Aspect (c) is the main focus of this thesis. This aspect has been intensively studied over
the last decades. Thanks to Courcelle’s theorem [29] and its variants [3, 13], we know a huge
number of NP-hard problems which are FPT parameterized by tree-width. Courcelle, Makowsky,
and Rotics provided a variant of Courcelle’s theorem [28] for clique-width and (Q-)rank-width.
More precisely, they showed that every problem expressible in monadic first order logic (called
MSO1) – a restriction of MSO2 – is FPT parameterized by clique-width, rank-width, or Q-rank-
width (see Subsection 2.6.1 for an overview of these meta-theorems). Many famous problems are
expressible in MSO1 such as Feedback Vertex Set and Dominating Set. But, the running
time of the algorithms we obtained from these meta-theorems are awful. If we want efficient
algorithms, we need to get our hands dirty.

For tree-width and clique-width, we have a precise idea on the parameterized complexity of
many classical NP-hard problems such as Vertex Cover, Hamiltonian Cycle, and Graph
Coloring. That is, for these problems, we know algorithms parameterized by the tree-width of
the input graph or the clique-width of a given k-expression whose dependency on the parameter
is asymptotically optimal under ETH. In contrast, for the other parameters, there is a huge gap
between the best lower bounds and the running times of the best-known algorithms. Section
2.6 gives an overview of the best (up to a constant in the exponent) algorithms (including our
results) and the best lower bounds for several classical NP-hard problems.

In the rest of this introduction, we explain in detail the questions that are addressed in this
thesis and we review our contributions.

While width measures defined through the rank of binary matrices6 over some field have been
intensively studied [92, 95, 115, 120], nothing is known on the width measures we could obtain
via the matrix decompositions over other algebraic structures. In Chapter 3, we introduce two
new width measures which, to the best of our knowledge, has never been studied. We call these
parameters N-rank-width and B-rank-width. Both parameters are defined through the notion
of rooted layout as the f-width of some function f defined via matrix decompositions over a
semiring. A semiring is an algebraic structure similar to a ring, but without the requirement
that each element has an additive inverse. To define these parameters, we use the following
semirings:

• the Boole semiring B := ({0, 1},∨,∧) where ∨ and ∧ correspond, respectively, to the
logical disjunction and the logical conjunction,

• the semiring (N,+, ·) where + and · are the addition and multiplication we learn in ele-
mentary school.

6Matrix whose entries are either 0 or 1.
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Despite the fact that these semirings do not have all the properties of a field, Froidure [64] has
showed that we can define for them a rank-like notion on binary matrices. Given a binary matrix
M , we define rwB(M) (resp. rwN(M)) as the minimum number of vectors we need to generate
the rows of M over B (resp. (N,+, ·)).

For example, let M be the matrix with rows (1, 1, 0), (0, 1, 1) and (1, 1, 1). The sum of the
vectors (1, 1, 0) and (0, 1, 1) over B,N and GF (2) equals, respectively, (1, 1, 1), (1, 2, 1), and
(1, 0, 1). Consequently, we have rwB(M) = 2, rwN(M) = 3, and the rank of M over GF (2)
equals 3.

The B-rank-width (resp. N-rank-width) of a graph G is the rwB-width (resp. rwN-width) of
G where rwB(A) := rwB(M) (resp. rwN(A) := rwN(M)) with M the adjacency matrix between
A and V (G) \A.

In this thesis, we prove that these two parameters are equivalent in terms of modeling power
to clique-width and rank-width. For doing so, we prove that rwB(A) (resp. rwN(A)) equals
the minimum number of bicliques that cover (resp. partition) the edges of the bipartite graph
associated with A and V (G)\A. Moreover, from these equivalences, we deduce from [90, 114, 22]
that computing rwB(A) and rwN(A) is NP-hard and that we cannot compute rwB(A) in time
22

rwB(A) unless ETH fails. We can extend these hardness results to the computation of the B-
rank-width and the N-rank-width of a graph thanks to a meta-theorem of Sæther and Vatshelle
[128] on the computation of width measures.

These two new parameters turn out to be rather disappointing: they are too hard to compute
and they do not seem to differ by much from rank-width and clique-width. For all these reasons,
we did not continue to study B-rank-width and N-rank-width.

Instead, we focus on the algorithmic applications of clique-width, rank-width and mim-width.
Taming an NP-hard problem with a width measure – finding an efficient algorithm parameterized
by this width measure – could be a formality as much as a calvary. The kindest NP-hard problems
are those for which the property of the object to be found can be verified by looking separately
at the neighborhood of each vertex. This is the case for Independent Set, Dominating Set,
and Maximum Induced Matching. These three problems belong to the family of problems
called (σ, ρ)-Dominating Set problems. Given a pair (σ, ρ) of finite or co-finite subsets of
N and a graph G, a (σ, ρ)-dominating set of G is a subset D of V (G) such that, for each
vertex x ∈ V (G), the number of neighbors of x in X is in σ if x ∈ X and in ρ otherwise. A
problem is a (σ, ρ)-Dominating Set problem if it consists in finding a minimum (or maximum)
(σ, ρ)-dominating set. For instance, the Dominating Set problem asks for the computation of a
minimum (N,N\{0})-dominating set. Many NP-hard problems belong to this family of problems,
see [18, Table 1].

This family was introduced and tamed with tree-width in [129]. It was also studied with
clique-width, (Q)-rank-width, and mim-width in [18, 73, 120]. Thanks to [18, 129], we have a
precise idea on the parameterized complexity of (σ, ρ)-Dominating Set problems with tree-
width and clique-width. That is, we can solve them in time 2O(k) ·n and, unless ETH fails, there is
no 2o(k) ·nO(1) time algorithm for several (σ, ρ)-Dominating Set problems, e.g., Independent
Set and Dominating Set. For the other parameters, we know from [18, 120] that any (σ, ρ)-
Dominating Set problem can be solved in time 2O(k log(k)) ·nO(1), 2O(k2) ·nO(1) and nO(k) when
parameterized respectively by Q-rank-width, rank-width and mim-width. However, we do not
have tight lower bounds under ETH for these parameters.

In contrast, taming problems involving a global constraint – e.g., connectivity or acyclicity –
require to get our hands dirty. Among these problems, we have some well-known and well-studied
problems such as Hamiltonian Cycle, Steiner Tree, Connected Vertex Cover, and
Feedback Vertex Set. For a long time, our knowledge on the parameterized complexity of
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this kind of problems with width measures was quite limited even for tree-width. For a while,
people used to think that for many of these problems the naive kO(k) · nO(1) time algorithms,
k the tree-width of the input graph, could not be improved. Indeed, it seemed necessary to
know the connected components of the partial solutions in order to be able to extend them
and also certify that the computed solution is really connected. Algorithmically, at each bag of
a tree-decomposition, the connected components of a partial solution can be represented by a
partition on the k vertices of the bag and storing all possible partitions leads to a kO(k) · nO(1)

time algorithm.
But, quite surprisingly, in 2011, Cygan et al. showed in [38] that we can design Monte Carlo

2O(k) · nO(1) time algorithms for a wide range of problems with a global constraint, including
Hamiltonian Cycle, Feedback Vertex Set, and Connected Dominating Set. For
doing so, they introduced a technique that they called Cut & Count. We explain the main
ideas of this approach in Section 4.3. The main drawbacks of the algorithms obtained from the
Cut & Count approach are (1) they are not deterministic, (2) the dependence on the number
of vertices of the input graph is not linear, and (3) the dependence on the inputs weights is
pseudo-polynomial.

In 2013, Bodlaender et al. proposed in [9] a general toolkit called rank-based approach to
design deterministic 2O(k) · n time algorithms, where k is the tree-width of the input graph,
to solve a wider range of connectivity problems. The algorithms obtained from the rank-based
approach do not suffer from the drawbacks of those obtained from the Cut & Count approach; on
the other hand, they have a slightly worse dependence on the tree-width. The main contribution
of [9] was to prove that, for some connectivity constraints problems, and for each bag B of
a tree-decomposition, we can compute in time 2O(k) · n a set of partial solutions of size 2k−1

that represents the set of all partial solutions. For doing so, given a set of partial solutions A
associated with a bag B, the authors define a binary matrix M such that:

• the rows of M correspond to the partitions of {1, . . . , k} that represent the connected
components of the partial solutions in A,

• the columns of M correspond to all the partitions of {1, . . . , k} and they represent all the
potential ways of connecting the vertices of B,

• M[p, q] = 1 if and only if the “join” of p and q equals {{1, . . . , k}}, i.e., represents a
connected solution.

Bodlaender et al. showed that the rank of M is at most 2k−1; moreover, a maximum (or minimum
if it is a minimization problem) weighted basis corresponds to a representative set of A and such
a representative can be computed in time |A| · 2O(k) · nO(1). More explanations on the rank-
based approach are given in Sections 4.1 and 4.2. Besides its theoretical interest, the rank-based
approach is also a viable approach in practice [50].

It is quite natural to ask whether we can adapt these approaches to other width measures.
Instinctively, we began to look at these questions with clique-width because this latter is easier
to handle than the other width measures. At the time, our knowledge on the complexity of
problems with a global constraint parameterized by clique-width was even more incomplete than
for tree-width before the introduction of the Cut & Count approach. Some problems Connected
Vertex Cover and Connected Dominating Set were known to be FPT parameterized by
clique-width because they are expressible in MSO1. However, we do not have a clear picture of
their parameterized complexities, except for some special cases such as Feedback Vertex Set
which was proved to admit a kO(k) · nO(1) time algorithm in [16], provided the graph is given
with a k-expression. Similarly to tree-width, it is known that these three problems do not admit
2o(k) · nO(1) time algorithms unless ETH fails.
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In Section 4.1, we prove that we can adapt the rank based approach to clique-width. We
investigate the connected variants of (σ, ρ)-Dominating Set problems (we ask the solution or
the complement of the solution to induce a connected graph) e.g., Connected Dominating
Set and Connected Vertex Cover. It is not hard to modify the dynamic programming
algorithm from [18] for (σ, ρ)-Dominating Set problems in order to solve their connected
variants in time kO(k) · nO(1), since it suffices to keep track, for each family of partial solutions,
of the possible partitions of the label classes induced by them. We modify this naive algorithm
slightly and prove that one can compute, at each step of computation, a representative set of
size 2O(k), yielding 2O(k) · n time algorithms resolving this family of problems.

We also consider the Feedback Vertex Set problem, which asks to compute a minimum
set of vertices to delete so that the resulting graph is acyclic, and propose similarly a 2O(k) ·n time
algorithm. But, the algorithm, even in the same spirit as the one for connected (σ, ρ)-dominating
set, is less trivial since one has to manage also the acyclicity. A task that is not trivial when
dealing with clique-width operations as a bunch of edges can be added at the same time. Indeed,
at each step of the dynamic programming algorithm, when dealing with tree-width the number
of vertices that have a neighbor in the rest of the graph is at most the tree-width of the given
decomposition, but for clique-width this number can belong to O(n).

In both cases, we use the same rank-based approach as in [9], but we need to adapt it in the
Feedback Vertex Set’s case to manage the acyclicity. Contrary to [9], we cannot guarantee
the acyclicity of the final solutions by just counting the number of vertices and edges. In our
case, counting the number of edges would yield an nO(k) time algorithm (we explain why in
Section 4.1).

In Section 4.2, we generalize and extend the results we obtained for clique-width to rank-
width, Q-rank-width, and mim-width. We also extend the class of problems considered to include
the acyclic (or acyclic and connected) variants of (σ, ρ)-Dominating Set problems, where
we ask the solution to induce an acyclic graph (or a tree). Among these variants of (σ, ρ)-
Dominating Set problems we have some famous problems such as Maximum Induced Tree
and Longest Induced Path. Consequently, we obtain efficient algorithms to solve all these
variants of (σ, ρ)-Dominating Set problems, with parameters clique-width, (Q)-rank-width,
and mim-width. The running times of these algorithms are given in Table 2. Up to a constant in
the exponent, these running times match those obtained for (σ, ρ)-Dominating Set problems
in [18, 120] even for “basic” problems such as Independent Set and Dominating Set. For
clique-width, it proves that adding connectivity or acyclicity constraints on a problem based on
locally checkable constraints does not make these problems significantly harder. For the other
width measures, it seems that this is also the case but we cannot confirm this intuition without
tight lower bounds.

Table 2: Running times of our algorithms for the different parameters, where n is the number of
vertices of the given graph and k the width of the input decomposition.

Clique-width Rank-width Q-rank-width Mim-width

2O(k) · nO(1) 2O(k2) · nO(1) 2O(k log(k)) · nO(1) nO(k)

To obtain these algorithms, we generalize and simplify the rank-based approach from [9]. For
doing so, we use the notion of d-neighbor equivalence. This concept was introduced in [18] and it
was used in [18, 120] to obtain the best algorithms for (σ, ρ)-Dominating Set parameterized
by clique-width, rank-width, Q-rank-width or mim-width. Formally, given A ⊆ V (G) and d ∈
N \ {0}, two sets X,Y ⊆ A are d-neighbor equivalent w.r.t. A if for all v ∈ V (G) \ A, we have

27



min(d, |N(v)∩X|) = min(d, |N(v)∩Y |), where N(v) is the set of neighbors of v in G. One easily
checks that it is an equivalence relation, and if d = 1, then it measures the number of subsets of
A with different neighborhoods in V (G) \A.

In Section 4.2, we use a parameter related to the d-neighbor equivalence relation that we
call d-neighbor-width. The d-neighbor-width of a graph G is defined from the function s-necd(A)
where s-necd(A) is the maximum number of equivalence classes of the d-neighbor equivalence
over A and V (G)\A. It is worth noticing that the boolean-width introduced in [17] corresponds
to the binary logarithm of the 1-neighbor-width.

Analogously to [18] for (σ, ρ)-Dominating Set problems, we prove that any connected
variant of a (σ, ρ)-Dominating Set problem can be solved in time polynomial in n and the
d-neighbor-width of the given layout, with d a constant that depends only on σ and ρ. The
running times obtained in Table 2 follow from the fact that the d-neighbor-width of a rooted
layout L is upper bounded by (d + 1)mw, 2rwQ log(d·rwQ+1), 2d·rw2 , and nd·mim with mw, rwQ, rw
and mim being, respectively, the module-width (a width equivalent to clique-width), the Q-rank-
width, the rank-width, and the mim-width of L. Until now, the d-neighbor equivalence relation
was only used for problems with a locally checkable constraint [18, 73, 120]. We showed that,
surprisingly, we can use it also for the connected variant of these problems. This highlights the
importance and the transversality of the d-neighbor-width for clique-width, (Q-)rank-width and
mim-width.

Unfortunately, for the acyclic (or acyclic and connected) variants of (σ, ρ)-Dominating Set
problems, we were not able to obtain algorithms whose running time is polynomial in n and the
d-neighbor-width of the given layout (for some constant d). Despite the fact that we heavily rely
on the d-neighbor width, we had to use the properties of the different width measures in order
to obtain the running times presented in Table 2.

The framework presented in Section 4.2 can be used on tree-decomposition to obtain 2O(k) ·
nO(1) time algorithms parameterized by tree-width for the variants of (σ, ρ)-Dominating Set
problems. Indeed, given a vertex separator S of size k, the number of d-neighbor equivalence
classes over S (resp. V (G) \ S) is upper bounded by 2k (resp. (d+ 1)k). For this reason, we can
consider our framework as a generalization of the rank-based approach of [9]. Our framework
generalizes also the clique-width adaptation of the rank-based approach used in Section 4.1
to obtain 2O(k) · n time algorithms, k being the clique-width of a given decomposition, for
Connected (σ, ρ)-Dominating Set problem and Feedback Vertex Set. However, the
constant in the running time of the algorithms in Section 4.1 and [9] are better than those of
our algorithms. For instance, in Section 4.1, we obtain a 15k · 2(ω+1)·k · kO(1) · n time algorithm
for Feedback Vertex Set, while in Section 4.2, we design a 54k · 22(ω+1)·k ·n4 time algorithm
for this latter problem. Indeed, the approach in 4.2 is based on a more general parameter and is
not optimized neither for tree-width nor clique-width.

Anyway, this approach simplifies the algorithms in Section 4.1 and [9] because we do not use
weighted partitions to encode the partial solutions. Consequently, the definitions of the dynamic
programming tables and the computational steps of our algorithms are simpler than those in
Section 4.1 and [9]. This is particularly true for Feedback Vertex Set where the use of
weighted partitions to encode the partial solutions in Section 4.1 implies to take care of many
technical details concerning the acyclicity.

Moreover, The results we obtain simplify the 2O(k2) · nO(1) time algorithm parameterized by
rank-width for Feedback Vertex Set from [65], and the nO(k) time algorithms parameterized
by mim-width for Feedback Vertex Set and Longest Induced Path from [85, 86].

In Section 4.3, we show that the ambit of our ideas are not limited to the rank-based approach.
We prove that the same ideas can be used to generalize the Cut & Count approach in order
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to obtain an efficient Monte-Carlo algorithm for any connected variant of a (σ, ρ)-Dominating
Set problem. This offers promising prospects to extend our ideas to other kinds of problems
and other approaches.

One might notice that we were not able to apply our generalizations of the Cut & Count and
rank-based approaches to all the problems considered in the original frameworks. This is the
case of the problems Steiner Tree and Hamiltonian Cycle. In fact, the Steiner Tree
problem is NP-hard on graphs of clique-width 2, i.e., cliques. However, its node-weighted variant
corresponds to a connected variant of a (σ, ρ)-Dominating Set problem and thus fits into our
framework.

On the other hand, we can prove that the Hamiltonian Cycle7 problem is not a variant
of a (σ, ρ)-Dominating Set problem. In fact, Hamiltonian Cycle is known to be express-
ible in MSO2 but not in MSO1. This is also the case for other well-known and well-studied
problems such as Edge Dominating Set, Graph Coloring, and Max Cut. These four
problems were known to be FPT parameterized by tree-width thanks to (variants of [3, 13])
Courcelle’s theorem [29] and to be XP parameterized by clique-width [49, 100]. The existence of
FPT algorithms parameterized by clique-width for these problems was asked in several papers
[71, 99, 100, 106]. Fomin, Golovach, Lokshtanov, and Saurabh [58] proved the W[1]-hardness
of Edge Dominating Set, Graph Coloring, and Hamiltonian Cycle parameterized by
clique-width. In 2014, the same authors [59] proved that, given a k-expression, Max-Cut and
Edge Dominating Set admit nO(k)-time algorithms, and they do not admit f(k) · no(k)-time
algorithms unless ETH fails. In the conclusion of [59], the authors state that, unless ETH fails,
there is no f(k) · no(k) time algorithm for Hamiltonian Cycle (this lower-bound is proved in
[60]) and they left open the question of finding an algorithm with running time f(k) · nO(k). At
that time, the best known running time parameterized by clique-width for Hamiltonian Cy-
cle and Graph Coloring were respectively nO(k2) [49] and n2O(k) [100]. Recently, Golovach
et al. [74] proved that, surprisingly, Graph Coloring cannot be solved in time f(k) · n2o(k)

unless ETH fails.
In Section 4.4, we prove that there exists an algorithm solving Hamiltonian Cycle in

time nO(k), when a clique-width k-expression is given. We present a technique of representative
sets using two-edge colored multigraphs on k vertices. The essential idea is that, for a two-
edge colored multigraph, the existence of an Eulerian trail that uses edges with different colors
alternately can be determined by two information: the number of colored edges incident with
each vertex, and the connectedness of the multigraph. With this idea, we avoid the bottleneck
of the naive algorithm, which stores all the possible multigraphs on k vertices with at most n
edges.

Thanks to this result, we now have a precise idea on the complexity of the most classical
problems that are W[1]-hard parameterized by clique-width. At first glance, the approach we
used to design our algorithm seems quite ad hoc, but it could help to extend the application
scope of the framework we designed for the connected and acyclic variants of (σ, ρ)-Dominating
Set problems.

Until now, we have only talked about decision and optimization problems. The vast majority
of problems studied through the parameterized complexity theory concerns these two kinds of
problems. Left behind for a while, counting problems are receiving increasing attention from the
parameterized complexity community [9, 36, 57, 73]. While decision problems ask whether there
exists a solution, counting problems ask for the number of solutions. Hence, the counting variant
of an NP-hard problem is unlikely to be solvable in polynomial time. On the other hand, if a
decision problem is in P, its counting variant is not necessarily solvable in polynomial time [130].

7See Subsection 1.4 for the definitions of Hamiltonian Cycle.
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As for decision problems, there exist two analog complexity classes to P and NP. The set
of counting problems solvable in polynomial time is denoted by FP (for Functional P). Valiant
[130] introduced a class of problems call #P which are an analog of NP for counting problems.
Informally, #P denotes the set of functions corresponding to the number of accepting paths of
a non-deterministic Turing machine. Under the assumption FP ̸= #P, one may be interested in
classifying counting problems between those that are easy to compute, i.e., belong to FP, and
those that are hard, i.e., are #P-hard [130], or even hard to approximate [72].

The counting variant of a decision problem could be harder to solve than this later. For
example, deciding whether a graph admits a perfect matching can be done in polynomial time
while counting the number of perfect matchings is #P-hard even on bipartite graphs [131]. In
the same spirit, deciding whether a 2-SAT formula admits a satisfying assignment is decidable
in polynomial time but counting the number of satisfying assignments of a 2-SAT formula is
#P-hard [131].

It is quite natural to study counting problems through the toolbox provided by the param-
eterized complexity theory. In Section 5.1, we give an overview on some results obtained on
counting problems with width measures.

Nevertheless, the known width measures are not able to explain every tractability result on
graph classes. This is especially true for counting problems whose decision variants are trivial.
For instance, counting the number of vertex covers is #P-hard in general but restricted to chordal
graphs, the problem belongs to FP [112]. To the best of our knowledge, we are not able to explain
this tractability result in terms of width measures, i.e., they are not implied by a known XP
or FPT algorithm. Consequently, we have to discover new width measures and for doing so, we
need a better understanding of these graph classes and of the problems that are tractable on
them.

In Chapter 5, we provide some results on the classical complexity of counting problems
which could lead to the creation of interesting width measures. The main problem we study
is the counting of the minimal transversals of a hypergraph. A hypergraph is a collection of
subsets - called hyperedges - of a finite ground set, and a transversal is a subset of the ground
set that intersects every hyperedge. Hypergraphs generalize the notion of graphs, i.e., a graph is
a hypergraph whose hyperedges have size 2. The problem of computing the number of minimal
transversals of a hypergraph – denoted by #Minimal Transversal – is closely related to the
Transversal Enumeration problem which asks for the enumeration of all (inclusion-wise)
minimal transversals of a given hypergraph. This enumeration problem has a lots of applications
[47]. Despite the fact that it has been extensively studied over the last decades, it is not yet known
whether this problem can be solved by an algorithm that runs in time polynomial in the size of
the output. The #Minimal Transversal problem has also many applications in several areas,
see for instance the description given in [44] in the case of model checking. This problem also
has applications in graph theory as it is closely related to the problem of counting the minimal
dominating sets of a graph, we denote this latter problem by #Minimal Dominating Set. It
turns out that these counting problems are both #P-hard in general. However, there is a rich
literature on solving these problems in polynomial time by restricting the input (hyper)graph
to a specific class, see for example [20, 73, 94].

Hypergraphs are known to be more complex to manipulate than graphs, even basic notions
on graphs such as acyclicity are not trivial to extend to hypergraphs. In fact, several concepts
have been introduced to characterize the acyclicity of hypergraphs [20]. Similarly, several width
measures on hypergraphs have been introduced to generalize tree-width [77, 78]. To the best
of our knowledge, no one was able to use these width measures to design an FPT or an XP
algorithm for an NP-hard (or #P-hard) problem. In fact, the width measures we know are either
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too general, i.e., they are bounded on hard instances, or they are too hard to manipulate.

In Section 5.2, we prove that we can solve #Minimal Transversal in polynomial time on
β-acyclic hypergraphs. The β-acyclicity is one generalization of graph acyclicity on hypergraphs.
As a corollary, we deduce that we can solve #Minimal Dominating Set in polynomial time
in strongly chordal graphs, a class of graphs of unbounded mim-width. This latter problem was
known to be #P-hard on chordal graphs [96]. These two results offer promising prospects for
the design of new width measures in graphs and hypergraphs.

Organization of this thesis

In Chapter 1, we present the definitions of the concepts we manipulate through this thesis. In
particular, we give the definitions of d-neighbor equivalence and the definitions of the graph
problems we deal with. We also present the concepts related to parameterized complexity and
the Exponential Time Hypothesis.

In Chapter 2, we give the definitions of the width measures we deal with in this thesis and
we give an overview of their properties. In particular, we compare their values on graphs and
we discuss about their computations. We also present the asymptotically best algorithms for
several classical problems parameterized by these width measures.

In Chapter 3, we define and study the B-rank-width and N-rank-width.
In Chapter 4, we present our results on connectivity problems: the acyclic and connected

variants of (σ, ρ)-Dominating Set problems and the Hamiltonian Cycle problem.
In Chapter 5, we summarize some parameterized complexity results on counting problems es-

pecially those concerning width measures and we present our results on #Minimal Transver-
sal and #Minimal Dominating Set.

In Chapter 6, we conclude by some perspectives and open questions concerning the study of
width measures.

Publications

The results presented in this thesis have led to following publications:

• More applications of the d-neighbor equivalence: acyclicity and connectivity
constraints,
with Mamadou Moustapha Kanté,
in Proceedings of the European Symposium on Algorithms (ESA 2019),
Also on Arxiv: CoRR, abs/1805.11275, 2018.
These results are presented in Section 4.2.

• Fast exact algorithms for some connectivity problems parametrized by clique-
width,
with Mamadou Moustapha Kanté,
Theoretical Computer Science 2019,
Also on Arxiv: CoRR, abs/1707.03584, 2017.
These results are presented in Section 4.1.

• Counting Minimal Transversals of β-Acyclic Hypergraphs,
with Florent Capelli and Mamadou Moustapha Kanté,
Journal of Computer and System Sciences 2019,
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Also on Arxiv: CoRR, abs/1808.05017, 2018.
These results are presented in Section 5.2.

• An optimal XP algorithm for Hamiltonian cycle on graphs of bounded clique-
width,
with O-joung Kwon and Mamadou Moustapha Kanté,
submitted to Algorithmica in 2018, short version in Proceedings of the 15th International
Symposium Algorithms and Data Structures (WADS 2017), volume 10389 of LNCS, pages
121–132, 2017,
Also on Arxiv: CoRR, abs/1702.06095, 2017.
These results are presented in Section 4.4.

During this Ph.D., I also work on projects that are not directly related to width measures.
For the sake of coherence, we did not present these results in this thesis. These results lead to
the following two publications:

• Towards a Polynomial Kernel for Directed Feedback Vertex Set,
with Eiben Eduard, Ganian Robert, Ordyniak Sebastian, and Ramanujan M. S.,
in Proceedings of the 42nd International Symposium on Mathematical Foundations of
Computer Science,(MFCS 2017), volume 83 of LIPIcs, pages 36:1–36:15, 2017.
Kernelization is one of the most interesting facets of the parameterized complexity the-
ory. The Kernelization theory provides many tools and fruitful techniques for a theoretical
study of preprocessing. Here the goal is to obtain a polynomial kernel which is essentially
a polynomial-time preprocessing algorithm that transforms the given instance of the prob-
lem into an equivalent one whose size is bounded polynomially in the parameter. In this
appendix, we study Directed Feedback Vertex Set parameterized by the feedback
vertex set number of the underlying undirected graph. We provide two main contributions:
a polynomial kernel for this problem on general instances, and a linear kernel for the case
where the input digraph is embeddable on a surface of bounded genus.

• On Minimum Connecting Transition Sets in Graphs,
with Thomas Bellitto,
in Proceedings of the 44th International Workshop on Graph-Theoretic Concepts in Com-
puter Science, (WG 2018), volume 11159 of LNCS, pages 40–51, 2018.
Also on Arxiv: CoRR, abs/1808.05017, 2018.
These results concern forbidden transition graphs. A forbidden transition graph is a graph
defined together with a set of permitted transitions, i.e., unordered pairs of adjacent edges
that one may use consecutively in a walk in the graph. In this appendix, we look for the
smallest set of transitions needed to be able to go from any vertex of the given graph to
any other. We prove that this problem is NP-hard and study approximation algorithms.
We develop theoretical tools that help to study this problem.
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Chapter 1

Preliminaries

In this chapter, we give a formal definition of all the recurrent concepts used in this thesis. In
Sections 1.1 and 1.2, we consider definitions from, respectively, set theory and graph theory.
Section 1.3 is dedicated to the notion of d-neighbor equivalence which is used in our algorithms
(presented in Section 4.2) and also to define two width measures in Chapter 2. We give the defi-
nition of this equivalence relation and some results. In Section 1.4, we define the graph problems
we deal with in this thesis. In Section 1.5, we review notions of parameterized complexity. We
conclude with a section presenting the Exponential Time Hypothesis.

1.1 Set Theory

The size of a set V is denoted by |V | or #V , and 2V denotes the power-set of V . When the
context is clear, we often write x to denote the singleton {x}. For two sets A and B, we denote
by A \ B the set {a ∈ a : a /∈ B}, and we write A ⊎ B for the disjoint union of A and B.
Moreover, we denote by A△B the symmetric difference of A and B, i.e. (A \B) ∪ (B \A).

Special Sets. We denote by N the set of non-negative integers and N+ the set N \ {0}. For
k ∈ N+, we denote by [k] the set {1, . . . , k}. The binary field, the rational field and the real field
are denoted, respectively, by GF (2), Q, and R.

Mapping. For a mapping f : A → B and U ⊆ B, we let f−1(U) := {a ∈ A : f(a) ∈ U}.
When U = {b}, we write f−1(b) instead of f−1({b}). We let min(∅) := +∞ and max(∅) := −∞.

Set function. Let V be a finite set and f : 2V → R be a set function. If f satisfies f(A) =
f(V \ A) for all A ⊆ V , then f is said to be symmetric. If f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y ),
then f is said to be submodular.

Merging Operation. For a ground set V and subsets A1, . . . ,Ak of 2V , with k ≥ 2, we let

⊗
1≤i≤k

Ai :=

{
∅ if Ai = ∅ for some 1 ≤ i ≤ k,

{T1 ∪ · · · ∪ Tk : ∀i ≤ k, Ti ∈ Ai} otherwise.

If k = 2, then we write A1
⊗

A2. We use this operator in almost all of our dynamic programming
algorithms.
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1.2 Graph Theory

Our graph terminology is standard, and we refer to R. Diestel’s book [40].

Graph. We use the term graph to denote loopless simple undirected graphs. A graph is an
ordered pair G = (V,E) where V is a set whose elements are called vertices and E is a set of
edges, which are unordered pairs of vertices. For a graph G, we denote its vertex set by V (G),
and its edge set by E(G). We write xy or yx to denote an edge {x, y}. For every vertex set
X ⊆ V (G), when the underlying graph is clear from context, we denote by X, the set V (G)\X.
Given a weight function w : V (G) → Q on the vertices of G and a set X ⊆ V (G), we write
w(X) :=

∑
x∈X w(x).

Neighborhood/degree. For a graph G and a vertex v ∈ V (G), the neighborhood of v,
denoted by NG(v), is the set of all vertices adjacent to v in G. The closed neighborhood of v is
denoted by NG[v] := NG(v) ∪ {v}. We extend these notions to sets of vertices, for X ⊆ V (G),
we define NG(X) :=

⋃
v∈X NG(v) and NG[X] := NG(X)∪X. We denote by degG(v) the number

of vertices adjacent to v in G. If the underlying graph is clear, then we may remove G from the
subscripts.

Subgraphs. Let G be a graph. A subgraph of G is a graph H such that V (H) ⊆ V (G)
and E(H) ⊆ E(G). For X ⊆ V (G), we denote by G[X] the subgraph of G induced by X, i.e.,
(X, {uv ∈ E(G) : u, v ∈ X}). For F ⊆ E(G), we write G−F for the subgraph (V (G), E(G)\F ),
and G|F for the subgraph (V (G), F ). For an edge e of G, we simply write G− e for G− {e}.

For X,Y ⊆ V (G), we denote by G[X,Y ] the bipartite graph with vertex set X ∪Y and edge
set {xy ∈ E(G) : x ∈ X ∧ y ∈ Y }. Moreover, we denote by MX,Y the (X,Y )-matrix such that
MX,Y [x, y] = 1 if y ∈ N(x), 0 otherwise.

Walk/Trail/Path/Cycle. A walk of a graph G is a sequence (v1, e1, v2, e2, . . . , vt−1, et−1, vt)
of vertices v1, . . . , vt and edges e1, . . . , et−1 such that, for every i ∈ [t − 1], the endpoints of ei
are vi and vi+1. The vertices v1 and vt are called end-vertices and the vertices v2, . . . , vt−1 are
called internal vertices. Notice that, for every v ∈ V (G), we consider the sequence (v) as a walk.
A walk is closed if its first and last vertices are the same. For convenience sometimes, we use the
shortcut (e1, e2, . . . , et−1) for a walk (v1, e1, . . . , vt−1, et−1, vt). This is possible because an edge
always determines the two vertices with which it is incident. A trail of a graph is a walk where
each edge is used at most once. A path of a graph is a trail in which all vertices (except possibly
the first and the last) are pairwise distinct. A cycle of a graph is a path whose end vertices are
the same.

Connected Component. A graph is connected if there exists a path between every pair of
vertices. A connected component of a graph G is a maximal connected subgraph of G. For a
graph G, we denote by cc(G) the following set

cc(G) := {V (C) : C is a connected component of G}.

Tree/Forest. A forest is an acyclic graph, i.e., a graph without cycles. A tree is a connected
forest. Since we manipulate at the same time graphs and trees representing them, the vertices
of trees will be called nodes. A node of degree at most one is called a leaf and a node of degree
at least two is called an internal node. A rooted tree is a tree with a distinguished vertex called
the root. For a rooted tree T and two adjacent nodes u and v of V (T ), we say that v is a child
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of u if u lies in the path between v and the root of T . A rooted binary tree is a rooted tree where
every internal node has exactly two children. A rooted caterpillar is a rooted binary tree where
every internal node has at least a child that is a leaf.

1.3 d-neighbor equivalence

The following definition is from [18].

Definition 1.1 (d-neighbor equivalence [16]). Let G be a graph, A ⊆ V (G), and d ∈ N+. Two
subsets X and Y of A are d-neighbor equivalent w.r.t. A, denoted by X ≡d

A Y , if min(d, |X ∩
N(u)|) = min(d, |Y ∩N(u)|) for all u ∈ A.

It is not hard to check that ≡d
A is an equivalence relation. See Figure 1.1 for an example of

2-neighbor equivalent sets.

A A

X

Y

Figure 1.1: We have X ≡2
A Y , but it is not the case that X ≡3

A Y .

We use the following definition to define two width measures in Chapter 2.

Definition 1.2 (necd). For a graph G and d ∈ N+, we let necd : 2V (G) → N where for all
A ⊆ V (G), necd(A) is the number of equivalence classes of ≡d

A.

Observation 1.3. Notice that while nec1 is a symmetric function [98, Theorem 1.2.3], necd is
not necessarily symmetric for d ≥ 2. For example, if a vertex x of G has c neighbors, then for
every d ∈ N+, we have necd({x}) = 2 and necd({x}) = 1 +min(d, c).

The following lemma from [18] upper bounds necd(A) in terms of nec1(A) for all A ⊆ V (G).

Lemma 1.4 ([18]). For every graph G and d ∈ N+, necd(A) and necd(A) are both upper bounded
by nec1(A)d·log2(nec1(A)), for each A ⊆ V (G).

1.4 Some graph properties and problems

This section is dedicated to the definition of the graph problems we deal with in this thesis.
We begin by the definition of some classical graph problems. We also give the definition of a
family of problems called (σ, ρ)-Dominating Set problems and we introduce the connected
and acyclic variants of this family of problems.

For a graph G and X ⊆ V (G), we define the following graph properties.

Dominating set. A set D ⊆ V (G) dominates a set U ⊆ V (G) if every vertex in U is either
in D or is adjacent to a vertex in D. A dominating set of G is a set that dominates V (G).

Clique. A set K ⊆ V (G) is a clique if the vertices in K are pairwise adjacent.
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Feedback vertex set. A set X ⊆ V (G) is a feedback vertex set if G[V (G) \X] is a forest.

Hamiltonian Cycle. A Hamiltonian cycle is a cycle that contains every vertex of G.

Independent Set. A set I ⊆ V (G) is an independent set of G if the graph G[I] has no edges.

Matching. A matching is a set of edges M ⊆ E(G) such that every vertex in G is incident to
at most one edge in M .

Induced matching. A set M ⊆ E(G) is an induced matching if M is a matching of G and
every edge in E(G) intersects at most one edge in M .

q-coloring. A q-coloring of G is a partition of the vertices into at most q independent sets.

Vertex cover. A set X ⊆ V (G) is a vertex cover of G if every edge in E(G) has at least one
endpoint in X.

We also define the following problems:

Dominating Set

Input: A graph G and a weight function w : V (G) → N.
Output: A dominating set D of G such that w(D) is minimum.

Clique

Input: A graph G and a weight function w : V (G) → N.
Output: A clique K of G such that w(K) is minimum.

Edge Dominating Set

Input: A graph G.
Output: A set D ⊆ E(G) of minimum size such that every edge in E(G) \ D is incident
with at least one edge in D.

Feedback Vertex Set

Input: A graph G and a weight function w : V (G) → N.
Output: A feedback vertex set X of G such that w(X) is minimum.

Graph Coloring

Input: A graph G.
Output: The minimum q ∈ N such that G admits a q-coloring.

Hamiltonian Cycle

Input: A graph G.
Output: Does G admit a Hamiltonian cycle?

36



Independent Set

Input: A graph G and a weight function w : V (G) → N.
Output: An independent set I of G such that w(I) is maximum.

Max-Cut

Input: A graph G.
Output: A set A ⊆ V (G) such that |E(G[A,A])| is maximum.

Node-Weighted Steiner Tree

Input: A graph G, a weight function w : V (G) → N, and a set K ⊆ V (G).
Output: A subset X ⊆ V (G) such that K ⊆ V (G), G[X] is connected, and w(X) is
minimum.

Vertex Cover

Input: A graph G and a weight function w : V (G) → N.
Output: A vertex cover X of G such that w(X) is minimum.

Longest Induced Path

Input: A graph G.
Output: An induced path of G of maximum length.

In general, let P be a vertex subset property. The maximization (resp. minimization) prob-
lem associated with P asks, given a graph G and a weight function w : V (G) → N, for the
computation of a set X ⊆ V (G) that satisfies P and such that w(X) is maximum (resp. mini-
mum).

Given a graph G, we say that a set X satisfies the acyclic, connected and AC variant of
P, if X satisfies P and G[X] is, respectively, acyclic, connected, and a tree. The acyclic, the
connected, and the AC variants of a maximization (resp. minimization) problem Π associated
with P are the maximization (resp. minimization) problems associated with, respectively, the
acyclic, the connected, and the AC variant of P. The acyclic, the connected, and the AC variants
of Π are denoted, respectively, by Acyclic Π, Connected Π, and AC-Π. For example, the
Connected Dominating Set problem is the connected variant of the Dominating Set
problem.

(σ, ρ)-Dominating Set problems. Now, we give the definition of the family of problems
called (σ, ρ)-Dominating Set problems. This family of problems was introduced in [129] as
a generalization of Dominating Set. Many NP-hard problems based on a locally checkable
constraint belong to the family of (σ, ρ)-Dominating Set problems. Bui-Xuan, Telle and Vat-
shelle [18] designed a beautiful algorithm that solves any (σ, ρ)-Dominating Set problem. This
algorithm is based on the d-neighbor equivalence where d depends on the considered problem.
See Subsection 4.1.3 for some explanation of the value of d. We will show in Section 4.2 that
similar algorithms exist for the acyclic and the connected variants of the (σ, ρ)-Dominating
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Set problems. We review the algorithmic results concerning the (σ, ρ)-Dominating Set prob-
lems and their variants in Subsection 2.6.2. To the best of our knowledge, these variants were
never studied until now.

Let σ and ρ be two (non-empty) finite or co-finite subsets of N. We say that a subset D of
V (G) (σ, ρ)-dominates a subset U ⊆ V (G) if

• for every vertex u ∈ U ∩D, we have |N(u) ∩D| ∈ σ and

• for every vertex u ∈ U \D, we have |N(u) ∩D| ∈ ρ.

A subset D of V (G) is a (σ, ρ)-dominating set if D (σ, ρ)-dominates V (G).
A problem Π is a (σ, ρ)-Dominating Set problem if Π is the maximization or minimization

problem associated with a (σ, ρ)-dominating set property.
Notice that vertex cover is not a property expressible as a (σ, ρ)-dominating set, but the

complement of a vertex cover, i.e., an independent set, is a ({0},N)-dominating set. In order
to catch problems like Connected Vertex Cover into the framework designed for (σ, ρ)-
dominating sets, we introduce the following notion of co-(σ, ρ)-dominating set. A subset X of
V (G) is a co-(σ, ρ)-dominating set if V (G) \X (σ, ρ)-dominates V (G). We denote by Co-(σ, ρ)-
Dominating Set problems the family of problems that are the maximization or minimization
problems associated with the co-(σ, ρ)-dominating set properties.

Examples of some vertex subset properties expressible as (σ, ρ)-dominating sets or as a variant
of a (σ, ρ)-dominating set are shown in Table 1.1. Many (σ, ρ)-Dominating Set problems and
their connected, acyclic and AC variants associated with these vertex subset properties are NP-
hard. These NP-hardness results are proved in [19, 68, 134]. It is worth mentioning that the
connected variants of the minimization problems associated with the properties vertex cover,
dominating set, and total dominating set are NP-hard [68]. Moreover, the connected variant
of the maximization problem associated with the induced q-regular subgraph property is also
NP-hard even when q = 2 [68], in this case, the problem asks for the computation of a longest
induced cycle.

1.5 Parameterized Complexity

In this section, we give a formal definition of some classes of problems such as FPT, XP, and
W[1]. We begin by recalling the definition of the big O notation that we use to describe the
running times of our algorithm.

Definition 1.5. Let f, g : R → R be two functions. We say that g(n) ∈ O(f(n)) if there exists
c ∈ N and N ∈ R such that for all n > N , we have g(n) ≤ c · f(n). Moreover, we say that
f(n) ∈ Ω(g(n)) if g(n) ∈ O(f(n)). Finally, we say that f(n) ∈ Θ(g(n)) if f(n) ∈ O(g(n)) and
g(n) ∈ O(f(n)).

The following is a formal definition of what is a parameterized decision problem.

Definition 1.6. A parameterized problem is a language L ⊆ Σ∗ × R, where Σ is a fixed, finite
alphabet. For an instance (x, k) ∈ Σ∗ × R, k is called the parameter.

As explained in the introduction, one way to describe the easy instances of an NP-hard
problem is to find parameterization of this problem for which the problem is FPT.

Definition 1.7 (FPT). A parameterized problem L ⊆ Σ∗×R is called fixed-parameter tractable
(FPT) if there exists an algorithm A (called FPT algorithm), a computable function f : R → R,
and a constant c such that, given (x, k) ∈ Σ∗ × R, the algorithm A correctly decides whether
(x, k) ∈ L in time bounded by f(k) · |(x, k)|c. We denote by FPT the complexity class containing
all fixed-parameter tractable problems.
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Table 1.1: Examples of (co)-(σ, ρ)-dominating sets and some connected, acyclic and AC variants,
with {≥ d} := N \ {0, . . . , d − 1}. Columns MAX and MIN show the complexity of the maxi-
mization and minimization problems associated with these subset properties, with P and NP-h
denoting, respectively, Polytime and NP-hard.

σ ρ Variant Standard name MAX MIN

{0} N Independent set NP-h P

{0} N Co Vertex cover P NP-h

N N+ Dominating set P NP-h

N {1} Perfect dominating set P NP-h

N+ N+ Total dominating set P NP-h

N {≥ d} d-dominating set P NP-h

{q} N Induced q-regular subgraph NP-h P

{1} N Induced matching NP-h P

N N Acyclic Induced forest NP-h P

N N AC Induced tree NP-h P

{1, 2} N Acyclic Induced linear forest NP-h P

{1, 2} N AC Induced path NP-h P

Example 1.8. The most famous example of an FPT problem is certainly the k-Vertex Cover
problem parameterized by the size of the solution, whose definition is the following.

k-Vertex Cover

Input: A graph G and k ∈ N.
Parameter: k.
Output: Does G admit a vertex cover of size k?

Algorithm 1 presents the pseudo-code of the famous O(2k · n) time algorithm for k-Vertex
Cover.

Algorithm 1: A(G, k)
Data: A graph G and k ∈ N.
Result: Answer whether G admits a vertex cover of size at most k.
if E(G) = ∅ then

return yes;
else if k = 0 then

return no;
else

take an edge uv ∈ E(G);
return A(G− u, k − 1) or A(G− v, k − 1);

Definition 1.9 (XP). A parameterized problem L ⊆ Σ∗ × R is called slice-wise polynomial
(XP) if there exists an algorithm A (called XP algorithm), two computable functions f : R → R
and g : R → R such that, given (x, k) ∈ Σ∗ × R, the algorithm A correctly decides whether
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(x, k) ∈ L in time bounded by f(k) · |(x, k)|g(k). We denote by XP the complexity class containing
all slice-wise polynomial problems.

Example 1.10. By definition, any parameterized problem which is FPT is also XP. The converse
is not true, the following two problems are in XP but they are unlikely to be in FPT.

k-Clique

Input: A graph G and k ∈ N+.
Parameter: k.
Output: Does G admit a clique of size k?

k-Dominating Set

Input: A graph G and k ∈ N.
Parameter: k.
Output: Does G admit a dominating-set of size k?

Given an n-vertex graph, we can solve both problems in time O(nk+1) with a naive algorithm
that checks for each subset X of vertices of size k, if X is a solution. As we will see in the
following, k-Clique and k-Dominating Set are two typical XP problems that are unlikely to
be FPT under a reasonable complexity assumption.

The analog of polynomial reduction in parameterized complexity is called parameterized
reduction whose definition is the following.

Definition 1.11 (Parameterized reduction). Let two parameterized problems A,B ⊆ Σ∗ × R.
A parameterized reduction from A to B is an algorithm A that, given an instance (x, k) of A,
outputs an instance (x′, k′) of B such that

• (x, k) ∈ A if and only if (x′, k′) ∈ B,

• k′ ≤ g(k) for some computable function g, and

• the running time is f(k) · |x|O(1) for some computable function f .

As intended, if there exists a parameterized reduction from a problem A to a problem B,
and B is FPT, then A is FPT.

The W-hierarchy is a set of complexity classes introduced by Downey and Fellows [43] in
order to capture the hardness of problems which are unlikely to be FPT. In this thesis, we
just need to know from this hierarchy the class of problems called W[1]-hard. We will not give a
formal definition of this class based on Boolean circuits, instead, we give the following equivalent
definition.

Definition 1.12. A parameterized problem A is W[1]-hard if there exists a parameterized reduc-
tion from k-Clique to A.

Analogously to P ̸= NP, it is conjectured that FPT ̸= W[1]. These two conjectures are very
similar (both are closely related to the Halting Problem [52]) and FPT ̸= W[1] is nearly as
reasonable as P ̸= NP. More arguments in favor of the conjecture FPT ̸= W[1] can be found in
[52].

It is worth noticing that FPT ̸= W[1] implies P ̸= NP, because every polynomial time
algorithm is, by definition, an FPT algorithm.
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As suggested by the definition, k-Clique is a W[1]-hard problem. This problem and some
variants such as k-Multicolored Clique are the starting point of many W[1]-hardness proof.

The complexity classes we have introduced so far form the following chain of inclusion:

FPT ⊆ W[1] ⊆ XP.

The following class is analog to NP-hard.

Definition 1.13. A parameterized problem is para NP-hard if it is NP-hard for some fixed
constant value of its parameter.

It is worth mentioning that, unless P = NP, any parameterized problem that is para NP-hard
cannot be in XP and consequently it cannot be in FPT either.

Example 1.14. A famous example of a para NP-hard problem is q-Coloring parameterized
by the number of colors whose definition is the following.

q-Coloring

Input: A graph G and q ∈ N.
Parameter: q.
Output: Does G admit a q-coloring?

It is well-known that this problem is NP-complete even when q = 3.

1.6 Exponential Time Hypothesis

As explained in the previous section, the conjecture FPT ̸= W[1] can be used to prove that a
parameterized problem is unlikely to admit an FPT algorithm. Similarly, the conjecture P ̸= NP
is used to prove that a problem is unlikely to admit a polynomial time algorithm. However,
these two conjectures do not give any hint about how fast we can solve a problem. To get more
precise lower bounds, we need a stronger assumption. The Exponential Time Hypothesis (ETH)
is a conjecture stating that, roughly speaking, 3-SAT has no algorithm subexponential in the
number of variables. Introduced in 2001 by Impagliazzo and Paturi [82], ETH has been used to
prove many lower-bounds for classical problems, but also FPT and XP problems. Before giving
its formal definition, we recall the definition of the small o notation.

Definition 1.15. Let f, g : R → R be two functions. We say that f(n) ∈ o(g(n)) if for all k > 0,
there exists N ∈ R such that k · f(n) ≤ g(n) for all n ≥ N .

Example 1.16. For example, we have log(n) ∈ o(
√
n),

√
n ∈ o(n), and 2

√
n ∈ 2o(n).

We recall the definition of the q-SAT problem.

q-SAT

Input: A CNF formula φ with n variables and m clauses where every clause contains at
most q literals.
Output: Does there exist a satisfying assignment for φ?

For q ≥ 3, let δq be the infimum of the set of constants c for which there exists a deterministic
algorithm solving q-SAT in time O(2cn · (n+m)O(1)). The Exponential-Time Hypothesis is then
defined as follows.
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Conjecture 1.17 (Exponential Time Hypothesis, ETH).

δ3 > 0.

Example 1.18. The Exponential Time Hypothesis implies the following.

• k-Clique cannot be solved in time f(k) ·no(k) with k the size of the solution. Consequently,
ETH implies FPT ̸= W[1].

• Vertex Cover cannot be solved in time 2o(n) · nO(1). This implies in particular that k-
Vertex Cover cannot be solved in time 2o(k) ·nO(1) with k the size of the solution because
k ≤ n.

It is worth mentioning a stronger variant of ETH called Strong Exponential Time Hypothesis
(SETH), whose definition is the following.

Conjecture 1.19 (Strong Exponential Time Hypothesis, SETH).

lim
q→+∞

δq = 1.

Intuitively, SETH states that, for any ϵ > 0, there are no (2−ϵ)n ·(n+m)O(1) time algorithms
solving CNF-SAT. The Strong Exponential Time Hypothesis implies ETH and gives even more
refined lower bounds. For example, unless SETH fails, there do not exist ϵ > 0 and an algorithm
solving k-Dominating Set in time O(nk−ϵ) with n the number of vertices of the input graph
[37, Theorem 14.42].

While ETH is generally considered a plausible complexity assumption, it is not the case for
SETH which is regarded by many as a quite doubtful working hypothesis that can be refuted
any time [37]. It is worth noticing that, assuming SETH, some lower bounds have been proved
for problems in P [1, 4, 23, 133].
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Chapter 2

Overview of width measures

This chapter gives the definitions and the characteristics of the width measures we studied in
this thesis. In Section 2.1, we define the notion of rooted layout and the parameters obtained
from this notion. In Section 2.2, we define clique-width and we give some of its properties. We
give an overview of the knowledge and the open problems concerning:

• the relations between the value of these width measures in Section 2.3,

• the relations between these width measures and some well-known graph classes in Section
2.4,

• the computations of these width measures in Section 2.5,

• how these width measures tame NP-hard problems in Section 2.6.

2.1 Rooted layout of a graph

In [127], Robertson and Seymour define the concept of branch-decomposition and branch-width to
define a variant of tree-width. These concepts allow to define a width measure from a symmetric
set function f called the branch-width of f . By now, these two notions are standard and they
were used to define many width measures on graphs and matroids, see [70, 115].

In this thesis, we use the rooted variant of branch-decomposition called rooted layout of a
graph (or rooted decomposition tree) whose definition follows. Contrary to branch-decomposition,
rooted layout allows to define width measure from a set function that is not symmetric. Rooted
layout is also more practical than branch-decomposition when designing algorithms.

Definition 2.1 (Rooted layout of a graph). Let G be a graph. A rooted layout of G is a pair
L = (T, δ) of a rooted binary tree T and a bijective function δ between V (G) and the leaves of
T . If T is a rooted caterpillar, then we said that (T, δ) is a linear layout of G.

Each node u of a rooted layout (T, δ) of a graph G is associated with a set of vertices Vu.
The following definition explains how we obtain this vertex set.

Definition 2.2. For each node x of T , let Lx be the set of all the leaves l of T such that the
path from the root of T to l contains x. We denote by V L

x the set of vertices that are in bijection
with Lx, i.e., V L

x := δ−1(Lx). When L is clear from the context, we may remove L from the
superscript.

See Figure 2.1 for an example of a layout of a graph and a vertex set associated with a node
of this layout. An example of a linear layout is presented in Figure 2.2.
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v1

v2
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δ(v2) = a
δ(v5) = b

δ(v1) = d

δ(v3) = e

δ(v4) = f

c

i

g(a) G

(b) A layout (T, δ) of G

v2v5

v1v4 v3

(c) G[Vi, Vi]

Vi

Vi

Figure 2.1: Subfigure (a) shows a graph G. Subfigure (b) shows a layout (T, δ) of G with r as
root of T . Observe that the vertex set associated with the node i is Vi := {v1, v3, v4}. Subfigure
(c) shows the bipartite graph G[Vi, Vi].

In order to define a width measure from the notion of rooted layout, all we need is a set
function f : 2V (G) → R. The function f is intended to measure the simplicity of the graph G[A,A]
through the value of f(A). The following definition shows how we obtain a width measure from
a set function f, we call the resulting parameter f-width. All the width measures dealt with in
this thesis are the f-width of some set function f.

Definition 2.3 (f-width). Let G be a graph. Given a set function f : 2V (G) → R and a rooted
layout (T, δ), the f-width of (T, δ), denoted by f(T, δ), is max{f(Vx) : x ∈ V (T )}. Finally, the
f-width of G, denoted by f(G), is the minimum f-width over all rooted layouts of G.

The linear version of a width measure is obtained from the notion of linear layout.

Definition 2.4 (Linear f-width). Let G be a graph. Given a set function f : 2V (G) → R, the
linear f-width of G is the minimum f-width over all linear layouts (T, δ) of G.

The rest of this section is dedicated to the definition of all the parameters we deal with in
this thesis that are the f-width of some set function.

Module-width

Introduced in [125], module-width is a width measure closely related to clique-width (see Theorem
2.21).

Definition 2.5 (Module-width). The module-width of a graph G is the mw-width of G where
mw(A) is the cardinal of {N(v) ∩A : v ∈ A} for all A ⊆ V (G).

One also observes that mw(A) is the number of different rows in MA,A. Moreover, mw is not
a symmetric function, i.e., mw(A) is not necessarily equal to mw(A) (see the following example).

Example 2.6. Notice that for the rooted layout (T, δ) of the graph G presented in Figure 2.1,
we have mw(Vi) = 2 ̸= mw(Vi) = mw(T, δ) = 3. Moreover, it is easy to check that mw(G) = 3.

44



Rank-width and Q-rank-width

Rank-width and Q-rank-width were introduced, respectively, in [115, 116] and [120].

Definition 2.7 (Rank-width). The rank-width of a graph G corresponds to the rw-width of G
where rw(A) is the rank over GF (2) of the matrix MA,A for all A ⊆ V (G).

Definition 2.8 (Q-rank-width). The Q-rank-width of a graph G corresponds to the rwQ-width
of G where rwQ(A) is the rank over Q of the matrix MA,A for all A ⊆ V (G).

Example 2.9. Observe that for the rooted layout (T, δ) of the graph G presented in Figure 2.1,
we have rw(T, δ) = rwQ(T, δ) = 2. This is optimal because G is not a distance hereditary graph
and Oum [115] proved that a graph has rank-width 1 if and only if it is a distance hereditary
graph. The same statement holds if we consider Q-rank-width instead of rank-width because the
proof does not depend on the GF (2) field.

Boolean-width and d-neighbor-width

Boolean-width and d-neighbor-width are both defined from the notion of d-neighbor equivalence
introduced in [18] (see Definition 1.1) Boolean-width was introduced in [17]. The d-neighbor-
width was first used in [5, 18] as a with measure on layouts called number of d-neighborhood.
Golovach et al. [73] used the term d-neighbor-width to describe a parameter on two-colored
graphs that is closely related to the one we define in this section (both notions collapse when
every vertex is two-colored).

Definition 2.10 (Boolean-width). For every graph G, the boolean-width corresponds to the
boolw-width of G where boolw : 2V (G) → R is the symmetric function such that boolw(A) =
log2(nec1(A)).

Observe that boolw is a symmetric function because nec1 is also a symmetric function (see
Observation 1.3).

Definition 2.11 (d-neighbor-width). For every graph G and d ∈ N+, the d-neighbor-width of
G corresponds to the s-necd-width of G where s-necd : 2V (G) → N is the symmetric function such
that s-necd(A) = max(necd(A), necd(A)).

Example 2.12. Notice that for the rooted layout (T, δ) of the graph G presented in Figure 2.1,
we have s-nec1(T, δ) = nec1(Vi) = 4. since {N(X) ∩ Vi : X ⊆ Vi} = {∅, {v2}, {v5}, {v2, v5}}.
Consequently, we have boolw(T, δ) = 2. However, this is not optimal because the linear layout
(T ′, δ′) presented in Figure 2.2 has boolean-width log2(3).

Damiand et al. [39] have proved that a graph has boolean-width 1 if and only if it is a distance
hereditary graph. As G is not a distance hereditary graph, we conclude that the (linear) boolean-
width of G is log2(3).

Maximum Induced Matching-Width

The maximum induced matching-width (mim-width for short) was introduced in [132].

Definition 2.13. The mim-width of a graph G is the mim-width of G where mim(A) is the size
of a maximum induced matching of the graph G[A,A] for all A ⊆ V (G).

It is worth noticing that if mim(A) = k, then, for every X ⊆ A, there exists W ⊆ X such
that |W | ≤ k and N(X) ∩ A = N(W ) ∩ A. This property is very useful to design algorithms
parameterized by mim-width.
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δ′(v2) = d

δ′(v5) = b

δ′(v1) = a

δ′(v3) = e

δ′(v4) = c

r

f

g

i

Figure 2.2: Linear layout (T ′, δ′) of the graph G presented in Figure 2.1 with boolw(T ′, δ′) =
boolw(Vg) = log2(3) and mim(T ′, δ′) = 1.

Example 2.14. Observe that for the rooted layout (T, δ) presented in Figure 2.1, we have
mim(T, δ) = mim(Vi) = 2 because the edges v4v5 and v3v2 form an induced matching in the
graph G[Vi, Vi]. But this is not a rooted layout of optimal mim-width as the linear layout pre-
sented in Figure 2.2 has mim-width 1.

2.2 Clique-witdh

In this section, we define clique-width and some related concepts. Clique-width is a graph pa-
rameter that originally emerges from the theory of graph grammars [32] and the terminology
was first introduced by Courcelle and Olariu [35] (see also the book [31]). The definition of
clique-width is algorithmic and uses the following definition of labeled graphs.

Definition 2.15 (k-labeled graph). A k-labeled graph is a pair (G, labG) with G a graph and
labG a function from V (G) to [k], called the labeling function; each set lab−1

G (i) is called a label
class. The vertices in lab−1

G (i) are called i-vertices of G or just i-vertices if the underlying graph
is clear from the context.

The graph decomposition associated with clique-width is called a k-expression.

Definition 2.16 (k-expression). Let k ∈ N+. We define the following four operations on k-
labeled graphs:

i(x) : for i ∈ [k], create a graph, with a single vertex x labeled i,

ρi→j(G) : for a labeled graph G and distinct labels i, j ∈ [k], relabel the vertices of G with label
i into j,

ηi,j(G) : for a labeled graph G and distinct labels i, j ∈ [k], add all the non-existing edges
between vertices with label i and vertices with label j,

G⊕H : take the disjoint union of two labeled graphs G and H, with

labG⊕H(v) :=

{
labG(v) if v ∈ V (G),

labH(v) otherwise.

A term ϕ built with the four operations defined above is well-formed if either

46



• ϕ = i(x) for some i ∈ [k],

• ϕ = f(ϕ′) with f ∈ {ηi,j , ρi→j : i, j ∈ [k] ∧ i ̸= j} and ϕ′ is a well-formed term, or

• ϕ = ⊕(ϕ′, ϕ⋆) with ϕ′ and ϕ⋆ two well-formed terms.

A clique-width k-expression, or shortly a k-expression, is a finite well-formed term built
with the four operations defined above. Each k-expression ϕ evaluates into a k-labeled graph
(val(ϕ), labval(ϕ)).

Definition 2.17 (Clique-width). The clique-width of a graph G, denoted by cw(G), is the
minimum k such that G is isomorphic to val(ϕ) for some k-expression ϕ.

For example, the cycle abcdea of length 5 can be constructed using the 3-expression repre-
sented as a tree-structure in Figure 2.3. It is not difficult to check that the clique-width of the
cycle abcdea is 3.

η1,3

⊕

ρ3→2

η2,3

⊕

η1,2

⊕

1(a) 2(b)

η1,3

⊕

3(c) 1(d)

3(e)

Figure 2.3: An irredundant 3-expression of C5.

We can assume without loss of generality that any k-expression defining a graph G uses O(n)
disjoint union operations and O(nk2) unary operations [35].

It is worth noticing, from the recursive definition of k-expressions, that one can compute in
time linear in |ϕ| the labeling function labval(ϕ) of val(ϕ), and hence we will always assume that
it is given.

In our algorithm, for a k-expression ϕ, we use the notions of subexpressions of ϕ and the
concept of k-labeled graphs arising in ϕ whose definitions are the following.

Definition 2.18 (Subexpressions and k-labeled graphs arising in a k-expression). The set of
subexpressions of a k-expression ϕ, denoted by Sub(ϕ), is defined by the following induction:

Sub(ϕ) :=


{ϕ} if ϕ := i(x) with i ∈ [k],

{ϕ} ∪ Sub(ϕ′) ∪ Sub(ϕ⋆) if ϕ = ϕ′ ⊕ ϕ⋆,

{ϕ} ∪ Sub(ϕ′) if ϕ = f(ϕ′) with f ∈ {ρi→j , ηi,j : i, j ∈ [k]}.

We say that a k-labeled graph (H, labH) arises in a k-expression ϕ if H = val(ϕ′) and labH =
labval(ϕ′) for some ϕ′ ∈ Sub(ϕ).

47



Let G be a graph, ϕ be a k-expression of G and ηi,j(ϕ
′) be a subexpression of ϕ. Observe

that any subexpression ηa,b(ϕ
⋆) of ϕ′ that adds edges between some vertices labeled i and j

in val(ϕ′) are useless and can be “removed” from ϕ without changing val(ϕ). When designing a
dynamic programming algorithm on a k-expression, it may be desirable to remove these useless
operations that can generate some technical issues as we would like to treat all the i-vertices of
val(ϕ′) in the same way. But, if some are adjacent to some j-vertices in val(ϕ′), then when we
compute the partial solutions associated with ηi,j(ϕ

′), we may need to identify the two cases,
which can prevent the algorithm from being FPT as we do not have a control on these edges.
In order to avoid these difficulties, our algorithms use the following definition of irredundant
k-expressions.

Definition 2.19 (Irredundant k-expressions [35]). A k-expression ϕ is called irredundant if, for
every subexpression ηi,j(ϕ

′) of ϕ, there are no edges in val(ϕ′) between the vertices labeled i and
the vertices labeled j.

Courcelle and Olariu [35] proved that given a clique-width k-expression, it can be transformed
into an irredundant k-expression in linear time.

The following lemma presents some useful properties of irredundant k-expressions.

Lemma 2.20. Let H be a k-labeled graph arising in an irredundant k-expression ϕ of a graph
G. For all u, v ∈ V (H) with labH(u) = i and labH(v) = j, we have the following.

1. If i = j, then NG(u) \ V (H) = NG(v) \ V (H).

2. If uv ∈ E(G)\E(H), then i ̸= j and, for all x, y ∈ V (H) with labH(x) = i and labH(y) = j,
we have xy ∈ E(G) \ E(H).

Proof. (1) Assume that i = j. Let ϕ′ be the subexpression of ϕ such that H = val(ϕ′). As u and
v have the same label in H, in every subexpression of ϕ having ϕ′ as a subexpression, u and v
have the same label. Since edges are added only through the operation ηa,b, we conclude that
NG(u) ∩ (V (G) \ V (H)) = NG(v) ∩ (V (G) \ V (H)).

(2) Assume that uv ∈ E(G) \ E(H). Then, we have i ̸= j because the operation ηa,b add
edges only between vertices with distinct labels. Let ϕ′ be the minimal (size wise) subexpression
of ϕ such that uv ∈ E(val(ϕ′)). It follows that ϕ′ = ηa,b(ϕ

⋆), with ϕ⋆ ∈ Sub(ϕ), labval(ϕ′)(u) = a
and labval(ϕ′)(v) = b. Let D := val(ϕ⋆). Observe that we have V (H) ⊆ V (D) and E(H) ⊆ E(D).
Moreover, all vertices labeled i in H are labeled a in D and those labeled j in H are labeled b in
D. Since ϕ is irredundant, there are no edges in D between a vertex labeled a and one labeled
b. Thus, for all vertices x ∈ lab−1

H (i) and y ∈ lab−1
H (j), we have xy /∈ E(H) and xy ∈ E(G).

The following theorem shows that clique-width and module-width are linearly equivalent,
i.e., for every graph G, we have cw(G) ∈ Θ(mw(G)).

Theorem 2.21 ([125, Theorem 6.6]). For every n-vertex graph G, mw(G) ≤ cw(G) ≤ 2mw(G).
One can moreover translate, in time at most O(n2), a given decomposition into the other one
with width at most the given bounds.

2.3 Hierarchy of width measures

In this section, we compare the properties of the following seven width measures: tree-width,
clique-width, rank-width, Q-rank-width, Boolean-width, d-neighbor-width, and mim-width. For
a graph G, we denote by tw(G) the tree-width of G, see [127] for a definition. In the following,
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for each parameter f, we give some upper bounds on the value of f over graphs or over vertex sets
in terms of the other parameters. We conclude by representing the hierarchy formed by these
seven width measures with two diagrams.

When we compare the f-width and g-width of two set functions f, g : 2V (G) → R, it is more
convenient and easier to compare the values of these functions over vertex sets. Notice that an
upper bound over vertex sets implies, by Definition 2.3 of f-width, the same upper bound over
rooted layouts and over graphs. The following lemma formalizes this statement.

Lemma 2.22. Let G be a graph and f, g : 2V (G) → R two set functions. If, for all A ⊆ V (G),
we have f(A) ≤ h(g(A)) for some function h, then we have

• f(T, δ) ≤ h(g(T, δ)) for all rooted layouts (T, δ) of G, and

• f(G) ≤ h(g(G)).

Before giving the known upper bounds between the different width measures, let us explain
the absence of upper bounds between some width measures. As discussed in the introduction,
the tree-width of a graph class can be arbitrarily bigger than the f-width of this graph, for all f ∈
{cw,mw, rw, rwQ, boolw,mim, necd : d ∈ N+}. For instance, the tree-width of a complete graph
G of size n is n − 1 while we have cw(G) ≤ 2, f(G) = 1, for all f ∈ {mw, rw, rwQ, boolw,mim},
and necd(G) = min(d, n) for every d ∈ N+. Moreover, the f-width of a graph class, for f ∈
{cw,mw, rw, rwQ, boolw, necd : d ∈ N+}, can be arbitrarily larger than the mim-width of this
graph class. For example, the (linear) mim-width of any interval graph is 1 [5] while there exist
interval graphs G on n vertices where cw(G), rw(G) ∈ Θ(

√
n), tw(G) = n− 1, and boolw(G) ≤

log2(n) [132, Theorem 4.3.3].

2.3.1 Upper bounds on clique-width

The following theorem shows how clique-width or module-width are upper bounded by the other
width measures.

Theorem 2.23 ([27, 132]). For any graph G and every A ⊆ V (G), we have:

(a) cw(G) ≤ 3
2 · 2tw(G),

(b) mw(A) ≤ 2rw(A) ≤ 2rwQ(A),

(c) mw(A) ≤ 2boolw(A)−1,

(d) mw(A) ≤ nec1(A).

Proof. Upper bound (a) was proved in [27]. Upper bound (b) is due to the fact that any binary
matrix M of rank k (over GF (2)) has at most 2k different rows and because rw(A) ≤ rwQ(A)
for all A ⊆ V (G). Upper bound (c) was proved in the proof of [132, Theorem 4.2.9]. The last
upper bound follows from the definition of mw and nec1 and the fact that, for every A ⊆ V (G),
we have {N(x) ∩A : x ∈ A} ⊆ {N(X) ∩A : X ⊆ A}.

Upper bounds (a)-(c) of Theorem 2.23 is almost tight due to the following theorem from [27]
and the fact that rw(G) ≤ rwQ(G) ≤ tw(G) + 1 and boolw(G) ≤ tw(G) + 1 (see the following
upper bounds).

Theorem 2.24 ([27]). For any k ∈ N, there is a graph G such that tw(G) = k and 2⌊k/2⌋−1 ≤
cw(G).
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Upper bound (d) of Theorem 2.23 is almost tight. Indeed, for any k ∈ N, let G[A,B] be the
bipartite graph with A = {a1, . . . , ak}, B = {b1, . . . , bk} and E(G[A,B]) = {aibj : i, j ∈ [k]∧i ̸=
j}. We have mw(A) = k and nec1(A) = |{N(X)∩B : X ⊆ A}| = |{∅, N(a1), . . . , N(ak), B}| =
k + 2.

2.3.2 Upper bounds on rank-width and Q-rank-width

Theorem 2.25 ([17, 117, 120]). For any graph G and for every A ⊆ V (G), we have:

(a) rw(G) ≤ tw(G) + 1,

(b) rw(A) ≤ rwQ(A) ≤ mw(A),

(c) rw(A) ≤ nec1(A) = 2boolw(A).

Proof. Upper bound (a) was proved in [117]. The first inequality of Upper bound (b) is implicitly
proved in [120, Lemma 3.2] and is due to the fact that a set of 0-1 vectors linearly dependent
over Q must also be linearly dependent over GF (2). The second inequality of Upper bound (b)
follows from the fact that the rank of a matrix over any field is at most its number of different
rows. Upper bound (c) was proved in [17, Lemma 1].

Theorem 2.26 ([120]). For any graph G and for every A ⊆ V (G), we have:

(a) rwQ(G) ≤ tw(G) + 1,

(b) rwQ(A) ≤ mw(A),

(c) rwQ(A) ≤ 2rw(A),

(d) rwQ(A) ≤ nec1(A) = 2boolw(A).

Proof. Upper bound (a) was proved in [120, Theorem 3.6]. Upper bound (b) was proved in
[120, Lemma 3.2]. Upper bound (c) was proved in [120, Lemma 3.2] and follows from the fact
that rwQ(A) ≤ mw(A). Upper bound (d) is an implication of Upper bound (b) and Theorem
2.23(c).

Observe that some of the inequalities of Theorems 2.25 and 2.26 are almost tight owing to
the following theorems and the fact that rw(G) ≤ rwQ(G) ≤ cw(G).

Theorem 2.27 ([76, 88]). An n × n grid has tree-width n, rank-width n − 1 and clique-width
n+ 1.

Theorem 2.28 ([17]). For large enough integer k, there exists a graph G with rw(G) ≥ k and
boolw(G) ≤ 2 log2(rw(G)) + 4.

2.3.3 Upper bounds on boolean-width

Theorem 2.29 ([5, 17, 120, 132]). For any n-vertex graph G and for every A ⊆ V (G), we have

(a) boolw(G) ≤ tw(G) + 1,

(b) boolw(A) ≤ mw(A),

(c) boolw(A) ≤ 1
4 rw(A)

2 +O(rw(A)),

(d) boolw(A) ≤ rwQ(A) · log2(rwQ(A) + 1),
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(e) boolw(A) ≤ mim(A) · log2(n),

(f) boolw(A) ≤ log2(necd(A)) for all d ∈ N+.

Proof. Upper bound (a) was proved in [132, Theorem 4.2.8]. Upper bound (b) was proved in
[132, Proof of Theorem 4.2.9]. Upper bound (c) was proved in [17, Lemma 1]. Upper bound
(d) follows from a result of [120, Theorem 4.2] stating that necd(A) ≤ (d · rwQ(A) + 1)rwQ(A)

for all d ∈ N+ and A ⊆ V (G). In particular, this result implies nec1(A) ≤ (rwQ(A) + 1)rwQ(A).
As boolw(A) = log2(nec1(A)), we deduce that boolw(A) ≤ rwQ(A) · log2(rwQ(A) + 1). Upper
bound (e) was proved in [5, Lemma 2]. The last upper bound follows from Definition 2.10 of
boolean-width (boolw(A) = log2(nec1(A))) and the fact that nec1(A) ≤ necd(A) for all graphs
G and every A ⊆ V (G).

Upper bounds (a) and (d) presented in Theorem 2.29 are tight due to Theorem 2.27.
The following theorem shows that Upper bound (c) of Theorem 2.29 is tight on vertex sets.

Theorem 2.30 ([17]). For any k ∈ N+, there exists a graph G and A ⊆ V (G) such that
rw(A) = k and boolw(A) ∈ Θ(k2).

However, we do not know if, for any k ∈ N+, there exists a graph G such that rw(G) = k
and boolw(G) ∈ Θ(k2). This leads to the following open question.

Open Question 2.31. Is the boolean-width of every graph subquadratic in its rank-width?

2.3.4 Upper bounds on mim-width

The following lemma provides some upper bounds between mim-width and the other parameters.
All of these upper bounds were proved in [132] but we give a proof for completeness.

Theorem 2.32 ([132]). Let G be a graph. For every A ⊆ V (G), mim(A) is upper bounded by
mw(A), rw(A), rwQ(A) and boolw(A) = log2(nec1(A)).

Proof. Let S be the vertex set of a maximum induced matching of the graph G[A,A]. Observe
that the restriction of the matrix MA,A to rows and columns in S is the identity matrix. Hence,
mim(A) is upper bounded both by rw(A) and rwQ(A). It is clear that every pair of subsets of
S ∩ A have a different neighborhood in A. Thus, we have 2mim(A) ≤ nec1(A). We deduce that
mim(A) ≤ boolw(A) = log2(nec1(A)).

2.3.5 Upper bounds on d-neighbor-width

Theorem 2.33 ([5, 120]). Let d ∈ N+. For all graphs G and for every A ⊆ V (G), we have

(a) necd(A) ≤ (d+ 1)mw(A),

(b) necd(A) ≤ 2d·rw(A)2,

(c) necd(A) ≤ 2rwQ(A)·log2(d·rwQ(A)+1),

(d) necd(A) ≤ mw(A)mim(A) ≤ nd·mim(A),

(e) necd(A) ≤ 2d·boolw(A)2 = nec1(A)d·log2(nec1(A)).
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Proof. Upper bound (b) follows directly from necd(A) ≤ mw(A)mim(A) [132, Lemma 5.2.3]. As
mim(A) ≤ rw(A) by Theorem 2.32 and mw(A) ≤ 2rw(A) [121], we deduce that necd(A) ≤
2d·rw(A)2 . Upper bound (c) was proved in [120, Theorem 4.2]. Upper bound (d) was proved in [5,
Lemma 2]. Upper bound (e) follows from Lemma 1.4.

Upper bound (a) was proved in [132, Lemma 5.2.2] but we give an alternative proof. Let
d ∈ N+. We want to prove that necd(A) and necd(A) are at most (d+1)mw(A). First, notice that,
for all vertices x and y in A, we have the following equivalences:

{x} ≡d
A {y} ⇐⇒ {x} ≡1

A {y} ⇐⇒ x and y have the same row in MA,A.

We deduce that there are mw(A) equivalence classes A1, . . . , Amw(A) of ≡1
A over A. Let X,Y ⊆ A.

By definition of ≡d
A and the construction of A1, . . . , Amw(A), if we have min(d, |X ∩ Ai|) =

min(d, |Y ∩ Ai|) for all i ∈ {1, . . . ,mw(A)}, then X ≡d
A Y . We deduce that necd(A) is at most

the cardinal of

{(min(d, |X ∩A1|), . . . ,min(d, |X ∩Amw(A)|)) : X ⊆ A)}.

Hence, we deduce that necd(A) ≤ (d+1)mw(A) because, for every X ⊆ A and i ∈ {1, . . . ,mw(A)},
we have min(d, |X ∩Ai|) ∈ {0, . . . , d}.

Let Y,W ⊆ A. For every i ∈ {1, . . . ,mw(A)}, we let ai ∈ Ai. Observe that, for every X ⊆ A,
every i ∈ {1, . . . ,mw(A)}, and all v ∈ Ai, we have |N(ai) ∩X| = |N(v) ∩X|. Hence, from the
definition of ≡d

A
, we deduce that if we have max(d, |N(ai) ∩ Y |) = max(d, |N(ai) ∩ W |) for all

i ∈ {1, . . . ,mw(A)}, then Y ≡d
A
W . Consequently, we deduce that necd(A) ≤ (d+ 1)mw(A).

2.3.6 Overview of the Hierarchy

Figure 2.4 represents the following relations ≤f and ≤poly, where

• a ≤f b if there exists a function f such that, for all graphs G, we have a(G) ≤ f(b(G)),

• a ≤poly b if there exists a polynomial P such that, for all graphs G, we have a(G) ≤
P (b(G)).

Observe that these two relations are reflexive and transitive. The parameters which are equivalent
for a relation are drawn inside the same node. For each pair (a, b) of parameters, there exists a
directed path from a to b in the diagram associated with ≤f (resp. ≤poly) if and only if b ≤f a
(resp. b ≤poly a).

The correctness of the diagrams presented in Figure 2.4 follows from Theorems 2.23-2.33.
Observe that we can use the following lemma and the hierarchy of parameters formed by ≤f

to extend some results concerning one parameter to the others.

Lemma 2.34. For any graph parameters a, b, if a ≤f b, then, for any graph problem Π, we have
the following:

• if Π is FPT parameterized by a, then Π is FPT parameterized by b,

• if Π is XP parameterized by a, then Π is XP parameterized by b,

• if Π is para NP-hard parameterized by b, then Π is also para NP-hard parameterized by a.

Proof. Let a and b be two parameters such that a ≤f b. Then, there exists a function f such
that a(G) ≤ f(b(G)) for all graphs G. Let Π be a graph problem. Suppose that Π is FPT when
parameterized by a. Thus, there exists an FPT algorithm A that, given an n-vertex graph G,
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Figure 2.4: Diagrams representing the relations ≤f and ≤poly, with d a constant in N+.

solves Π in time g(a(G)) · nO(1). As a(G) ≤ f(b(G)) for all graphs G, the running time of A
is also O(g(f(b(G))) · nO(1)). Hence, Π is also FPT when parameterized by b. Similarly, we can
prove that if Π is XP parameterized by a, then Π is XP parameterized by b.

Now suppose that Π is a para NP-hard graph problem parameterized by b. Then, there exists
c ∈ R such that Π is NP-hard on graphs with b(G) ≤ c. Therefore, Π is NP-hard on graphs with
a(G) ≤ f(c). Hence, Π is para NP-hard parameterized by a.

2.4 Relation between width measures and graph classes

As explained in the introduction, many polynomial time algorithms for NP-hard problems on
graph classes can be explained through the width measures we have defined in this chapter.
In this section, we present some lower bounds on the value of these parameters on some well-
known graph classes. For the definition of the graph classes introduced in this section we refer
to www.graphclasses.org/.

It is easy to see that graphs of clique-width 1 are graphs with no edges. The graphs of clique-
width at most 2 correspond to the cographs [35]. The following theorem from [26] shows that
we can recognize the graphs of clique-width at most 3 in polynomial time.

Theorem 2.35 ([26]). There exists an algorithm that, given a graph G with n vertices and m
edges, decides whether cw(G) ≤ 3.

The following theorem characterizes the graphs of f-width at most 1 for f ∈ {rw, rwQ, boolw}.

Theorem 2.36 ([115, 39]). For every f ∈ {rw, rwQ, boolw} and every graph G, we have f(G) ≤ 1
if and only if G is a distance hereditary graph.

Proof. Oum [115] proved that a graph has rank-width at most 1 if and only if it is a distance
hereditary graph. The same statement holds if we consider Q-rank-width instead of rank-width
because the proof does not depend on the GF (2) field. Damiand et al. [39] proved that a graph
has boolean-width at most 1 if and only if it is a distance hereditary graph.
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Belmonte and Vatshelle [5] proved that there are many well-known classes of graphs where
mim-width is bounded by a constant and boolean-width by O(log(n)). They also proved that
we can compute in polynomial time a rooted layout of bounded mim-width for any graph that
belongs to these classes of graphs. The following theorem lists these graph classes.

Theorem 2.37 ([5]). The following graph classes have bounded mim-width: interval graphs,
circular arc graphs, circular permutation and permutation graphs, convex graphs, circular k-
Trapezoid graphs, k-polygon graphs, Dilworth-k graphs, and co-k-degenerate graphs for fixed k.

Moreover, for any n-vertex graph G that belongs to these classes, we have boolw(G) ∈
O(log(n)) and we can compute in polynomial time a rooted layout of constant mim-width and of
boolean-width O(log(n)) (for circular k-Trapezoid graphs, an intersection model is needed in the
input).

In [5], the authors asked whether Theorem 2.37 can be extended to the graph classes called
strongly chordal graphs and tolerance graphs. Later, Mengel [108] proved that mim-width is
unbounded in several graph classes including strongly chordal graphs. However, the following
question remains open.

Open Question 2.38. Is there a constant c ∈ N such that, for every tolerance graph G, we
have mim(G) ≤ c?

Recently, Fomin, Golovach, and Raymond [61] proved the following theorem that extends
Theorem 2.37 to the class of H-graphs for every fixed graph H. For a graph H, a graph G is
an H-graph if it is an intersection graph of connected subgraphs of some subdivision of H. It is
worth mentioning that H-graphs generalize interval graphs (with H a complete graph with two
vertices) and circular arc graphs (with H a cycle of length 3).

Theorem 2.39 ([61]). Let H be a graph. For every H-graph G whose intersection model is
given, we can compute in polynomial time a linear layout (T, δ) with mim(T, δ) ≤ 2|E(H)| and
boolw(T, δ) ≤ 2|E(H)| · log2(n).

We conclude this section by the following open question.

Open Question 2.40. Can we characterize and recognize in polynomial time the following
graph classes?

• The graphs of clique-width at most 4.

• The graphs of (linear) boolean-width at most log2(3).

• The graphs of (linear) mim-width 1.

Vatshelle [132] proved that any graph of mim-width 1 is a perfect graph. Recently, Jaffke
et al. [86] proved that Hamiltonian Cycle is NP-hard on graphs of linear mim-width 1 even
when a rooted layout is given. Until now, on all graph classes of linear mim-width 1 (e.g. interval
graphs, permutation graphs, convex graphs), Hamiltonian Cycle was known to be polynomial
time solvable. This result reveals our lack of knowledge concerning the nature of the graphs of
linear mim-width 1.

2.5 Computation

In this section, we will discuss the complexity of computing the parameters we have defined in
this chapter. For a parameter f ∈ {cw, rw, rwQ,mim, boolw, nec1} and a polynomial P , let us
define the following parameterized problems.
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f-Width

Input: A graph G and an integer k ∈ N.
Parameter: k.
Output: Is the f-width of G at most k?

P -Approx f-Width

Input: A graph G and an integer k ∈ N.
Parameter: k.
Output: Is the f-width of G at most P (k)?

Observe that if P is a linear polynomial (of maximum degree 1) then the problem P -Approx
f-Width consists in approximating the f-width of graphs within a constant factor. It is worth
noticing that, for every f, if f-Width is FPT, then the problem of computing the f-width of
a graph G is FPT parameterized by f(G). Moreover, if, for some polynomial P , the problem
P -Approx f-Width is FPT, then the problem of computing, given a graph G, an integer k ∈ N
such that f(G) ≤ k ≤ P (f(G)) is FPT parameterized by f(G).

The first subsection presents known complexity lower bounds such as NP-hardness concerning
these two problems. The last subsection summarizes the known algorithms for f-Width and P -
Approx f-Width with f ∈ {rw, rwQ} and discusses the implications of these algorithms for the
other parameters via the different upper bounds presented in the above section.

2.5.1 Complexity lower bounds

The NP-hardness of computing the clique-width of graphs was a problem open since the intro-
duction of clique-width in the early 1990s. It was solved by Fellows et al. with the following
theorem.

Theorem 2.41 ([54]). If P ̸= NP, then, for any ϵ ∈ R with 0 < ϵ < 1, there are no polynomial
time algorithms that, given an n-vertex graph G, output an integer k such that k− cw(G) ≤ nϵ.
In particular, the problem cw-Width is NP-hard.

Theorem 2.42 ([118]). The problem rw-Width is NP-hard.

The two following theorems from [128] gives some complexity lower bounds on the compu-
tation of mim-width and boolean-width. In order to obtain these results, Sæther and Vatshelle
prove that computing boolw(G) and mim(G) for a graph G is at least as hard as computing,
respectively, boolw(A) and mim(A) for a vertex set A of a graph (see Theorem 3.6).

They deduce the two following theorems from the facts that computing boolw(A) is NP-hard
[124] and that computing mim(A) is W[1]-hard [110] and not approximable within a constant
factor unless NP = ZPP [48] where ZPP corresponds to the class of problems that admit a
probabilistic Turing machine that always returns the correct answer and whose expected running
time is polynomial.

Theorem 2.43 ([128]). The problem boolw-Width is NP-hard.

By Definition 2.10 of boolean-width, we deduce that Theorem 2.43 implies that the problem
nec1-Width is NP-hard.

Theorem 2.44 ([128]). The problem mim-Width is W[1]-hard. Moreover, for any constant
c ∈ R, there is no polynomial time algorithm that solves the problem c-Approx mim-Width
unless NP = ZPP.
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We conclude this subsection with some open questions concerning the problems f-Width.
The following open question summarizes the long standing open questions surrounding the com-
putation of clique-width and boolean-width (or equivalently 1-neighbor-width).

Open Question 2.45. For each f ∈ {cw, boolw, nec1}, is the problem f-Width FPT, XP, W[1]-
hard or para NP-hard? Does there exist a polynomial P such that P -Approx f-width is FPT
or XP?

The following open question concerns the computation of mim-width.

Open Question 2.46. Is the problem mim-Width XP or para NP-hard? Does there exist a
polynomial P such that P -Approx mim-width is FPT or XP?

2.5.2 Computation of Rank-width and Q-rank-width

Among the parameters defined in this chapter, rank-width and Q-rank-width are the only ones
known to be efficiently computable thanks to the following theorem.

Theorem 2.47 (Oum and Seymour [121]). For each f ∈ {rw, rwQ}, there is a 8k · n9 · log(n)
time algorithm that, given a graph G as input and k ∈ N, either outputs a rooted layout for G
of f-width at most 3k + 1 or confirms that the f-width of G is more than k.

This result relies on the fact that the set functions rw and rwQ are both symmetric, submod-
ular and computable in polynomial time. Properties that none of the other set functions defined
in this chapter fulfill.

For rank-width, this result can be improved [118] by using its properties (in particular, the
fact that GF (2) is a finite field). In fact, it is known that rw-Width is FPT [81, 89]. Moreover,
for any k ∈ N and for any n-vertex graph G, we can compute a rooted layout (T, δ) of rank-width
k or confirm that rw(G) > k in time O(h(k) · nO(1)) for some function h.

We summarize the current knowledge concerning the computation of rank-width with FPT
algorithms in Table 2.1.

The following theorem shows the implications of the algorithms presented in Table 2.1 for
the other width measures which are equivalent to rank-width for the relation ≤f .

Theorem 2.48 ([17]). Let G be a graph and h : R → R be a function. For every rooted layout
(T, δ) of G such that rw(T, δ) = h(rw(G)), we have:

(a) f(T,L) ≤ 2h(f(G)) for each f ∈ {mw, rwQ} and

(b) boolw(T,L) ≤ 22h(boolw(G)).

Proof. Inequality (a) follows from the upper bounds of Theorems 2.23-2.26 and Lemma 2.22.
Indeed, by Lemma 2.22, for each f ∈ {mw, rwQ}, we have rw(G) ≤ f(G) and, for every rooted
layout (T, δ) of G, we have f(T, δ) ≤ 2rw(T,δ). Thus, for every rooted layout (T, δ) of G with
rw(T, δ) = h(rw(G)), we can conclude that f(T, δ) ≤ 2h(f(G)). The proof for Inequality (b) is
similar and was proved in [17].

We conclude this section by two open questions concerning the computation of rank-width
raised in [119]. The first one is quite natural in view of Table 2.1.

Open Question 2.49. Does there exist an algorithm with some function f that, given a graph
G and k ∈ N, finds a rooted layout of rank-width at most f(k) or confirms that rw(G) > k in
time O(2O(k) · n3)?
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Table 2.1: Values of g(k), running time and paper of some FPT-algorithms that, given an n-
vertex graph G and k ∈ N, compute a rooted layout of rank-width at most g(k) or confirm that
rw(G) > k.

Paper g(k) Running time Observations

[121] 3k + 1 O(8k · n9 · log(n))

Works also for any symmetric submodular

function under some conditions, in particular,

it works for rwQ.

[118] 3k + 1 O(8k · n4)

Algorithm from [121] with a faster subroutine

designed for rank-width that uses vertex-minor

to confirm rw(G) > k.

[118] 24k O(h(k) · n3)

Based on a result from [80] and the equivalence

between rank-width of bipartite graphs and

branch-width of binary matroids. The function

h(k) is not given explicitly in [80, 118]

[118] 3k − 1 O(f(k) · n3)

The algorithm uses monadic second order

logic and Courcelle’s theorem to speed up a

subroutine of [121]. The function f(k) is a

huge function.

[81] k O(g(k) · n3)
Uses a huge list of forbidden minors in

matroids, g(k) is a huge function.

[89] k O(r(k) · n3)

Solve a more general problem. Self contained

algorithm based on a compact representation of rooted

layouts, the function r(k) is not given explicitly.
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The best algorithms we know for approximating the rank-width of a graph have a cubic
dependence in the number of vertices. Can we avoid this? It is worth noticing that for tree-width,
Bodlaender et al. presented an algorithm that, given a graph G and an integer k, computes a
tree-decomposition of tree-width at most 5k + 4 or confirms that tw(G) > k in time 2O(k) · n
[11].

Open Question 2.50. Does there exist an algorithm with some functions f ,g and a constant
c < 3 that, given an n-vertex graph G, finds a rooted layout of rank-width at most f(k) or
confirms that rw(G) > k in time O(g(rw(G)) · nc)?

Ideally, the function f(k) in Questions 2.49 and 2.50 should be a linear polynomial.

2.6 Width measures versus NP-hard problems

In this section, we discuss about how the seven parameters defined in this chapter catch the
hardness of NP-hard problems. We begin by presenting Courcelle’s meta-theorem and its variant
for clique-width. Finally, we will discuss the parameterized complexity of some classical prob-
lems such as Minimum Vertex Cover, Minimum Dominating Set, Hamiltonian Cycle,
Graph Coloring, Max Cut, etc.

2.6.1 Monadic second order logic

Many graph problems are expressible in monadic second order logic (MSO2 for short). Informally,
an MSO2 formula is a well-formed term built with:

• the quantifiers ∀ and ∃,

• variables for vertices, edges, sets of vertices and sets of edges,

• the logical connectives ¬,∧,∨,⇒,⇔,

• the binary relations =,∈, inc, adj where inc and adj correspond, respectively, to the predi-
cates “this edge is incident to this vertex” and “these two vertices are adjacent”.

See [31] for a more formal definition. Many well-known and well-studied NP-hard problems are
expressible in MSO2 such as Hamiltonian Cycle, 3-Colorability, etc.

The following theorem is certainly the most famous theorem in parameterized complexity.

Theorem 2.51 (Courcelle’s theorem [29]). For every problem Π expressible in MSO2 by a
formula ϕ, there exists a function f such that Π is solvable in time f(|ϕ|, k) · n on graphs with
n vertices and with a tree decomposition of tree-width k.

In fact, the requirement that G is provided with a tree decomposition is not necessary since
Bodlaender [7] proved that, for any graph, we can compute an optimal tree decomposition in
time kO(k3) · n. Consequently, the problems expressible in MSO2 are FPT parameterized by
tree-width and the length of the formula. Observe that there exist some variants [3, 13, 34] of
Theorem 2.51 which are useful for optimization and counting problems.

Courcelle, Makowsky, and Rotics [28] extended Theorem 2.51 to graphs of bounded clique-
width at a cost of a smaller set of problems. These problems are those expressible by an MSO1

formula, i.e., an MSO2 formula that does not use edge set quantifications.

Theorem 2.52 ([28]). For every problem expressible in MSO1 by a formula ϕ, there exists an
algorithm that, given a graph G and a k-expression of G, solves this problem in time f(|ϕ|, k) ·n.
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Observe that we can compute a 2cw(G)+1-expression for any graph G in time f(cw(G)) · n3

thanks to the algorithm from [118] and Theorems 2.21 and 2.48. Consequently, for any problem
Π expressible in MSO1 by a formula ϕ, there exists an algorithm, that given a graph G, solves
Π in time g(|ϕ|, cw(G)) · n3. That is, every problem expressible in MSO1 is FPT parameterized
by clique-width and the length of the formula.

Notice that Theorem 2.52 holds also if we replace clique-width by any with measure p such
that cw ≤f p thanks to Lemma 2.34.

These two meta-theorems are useful in order to know whether a problem is FPT param-
eterized by tree-width or clique-width because we just have to express the problem in MSO2

or MSO1. As their proofs are constructive, given an MSO2 formula representing some problem
Π, we can use them to design an FPT algorithm for Π parameterized by tree-width (or clique-
width if ϕ is an MSO1 formula). However, the running time of this algorithm may be a tower
of exponentials. In fact, the height of this tower of exponentials depends on the number of al-
ternating quantifiers in the monadic second order formula. Consequently, we cannot use these
meta-theorems to design efficient FPT algorithms and for doing so, you need to “get your hands
dirty”.

Observe that, there is little hope to extend Theorem 2.52 to problems expressible in MSO2.
Indeed, Courcelle, Makowsky, and Rotics [28] proved that there exist problems expressible in
MSO2, that are not solvable in polynomial time even on cliques unless NEXP = EXP where NEXP
(resp. EXP) is the set of decision problems solvable by a non-deterministic (resp. deterministic)
Turing machine using time 2n

O(1) with n the input size. Notice that NEXP ̸= EXP is a weaker
assumption that P ̸= NP.

However, this negative result does not rule out the existence of FPT algorithms parameterized
by clique-width for problems that are not expressible in MSO1. Several classical problems are not
expressible in MSO1 such as Max-Cut, Edge Dominating Set (EDS), Graph Coloring
(GC), and Hamiltonian Cycle (HC). These problems are known to be FPT parameterized
by tree-width thanks to Courcelle’s theorem or some variants of this latter theorem [3, 13, 34].
They are also known to admit XP algorithms parameterized by clique-width (see the following
subsection). A natural question is whether these problems are FPT parameterized by clique-
width. Fomin, Golovach, Lokshtanov, and Saurabh [58] proved the W[1]-hardness of EDS, GC,
and HC with clique-width as parameter, which implies that these problems are not FPT pa-
rameterized by clique-width, unless W[1] = FPT. In 2014, the same authors [59] proved that
Max-Cut and EDS do not admit f(k) · no(k)-time algorithms unless ETH fails.

There are no such meta-theorems for mim-width. In fact, Vatshelle proves [132, Lemma 5.1.5]
that Clique parameterized by mim-width is NP-hard on graphs of mim-width at most 6. As
Clique is expressible in MSO1, it is unlikely that there exists a meta-theorems like Courcelle’s
one for mim-width.

2.6.2 Parameterized complexity of classical problems

Once we know that a problem is FPT, a natural question that arises is how fast we can solve
this problem. In this section, we summarize the asymptotically fastest known FPT algorithms
for each parameter defined in this chapter and for some classical problems such as Minimum
Vertex Cover, Minimum Dominating Set, Minimum Feedback Vertex Set, Graph
Coloring, Hamiltonian Cycle, Max Cut, etc. We also give the best known lower bounds
for these problems.

We begin by the algorithms for (σ, ρ)-Dominating Set problems and their connected and
acyclic variants. All of these problems are FPT parameterized by clique-width and XP param-
eterized by mim-width. Finally, we will talk about several classical problems that are known
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to be W[1]-hard parameterized by clique-width such as Graph Coloring and Hamiltonian
Cycle.

As explained in the introduction, we have a precise idea on the parameterized complexity of
the different problems dealt with in this subsection concerning tree-width. In fact, all of these
problems admit 2O(tw(G)) · n time algorithms [9, 37, 129].

(σ, ρ)-Dominating Set problems and their acyclic and connected variants

We present the asymptotically best algorithms for (σ, ρ)-Dominating Set problems and for the
acyclic and connected variants of these problems. We define these problems and give a list
of famous (σ, ρ)-Dominating Set problems in Section 2.6.2. Examples of such problems are
given in Table 1.1. We will see that, for each parameter defined in this chapter, the best known
parameterized algorithms for those problems are obtained by using the d-neighbor-width and the
upper bounds of Theorem 2.33 on this latter parameter. This highlights how well the d-neighbor
width catch the hardness of this kind of problems.

For each parameter defined in this chapter, the best1 known algorithms for all NP-hard
(σ, ρ)-Dominating Set problems are obtained from the following theorem from [18, Theorem
1].

Theorem 2.53 ([18]). Given an n-vertex graph G and a rooted layout L of G, we can solve any
(σ, ρ)-Dominating Set problem in time O(s-necd(L)3 · log(s-necd(L)) · n3) with d a constant
that depends only on (σ, ρ).

It is worth noticing that the running time given in [18, Theorem 1] is O(s-necd(L)3 · n4)
because the authors replace the factor log(s-necd(L)) by n in their running time proof. Notice
that Bui-Xuan, Telle, and Vatshelle extended Theorem [18] to a wider class of problems called
LC-VSVP problems. This class generalizes the (σ, ρ)-Dominating Set problems and includes
homomorphism problems like H-Coloring and H-homomorphism with H a fixed graph.

The two following theorems summarizes the results we obtained in Section 4.2 concerning the
acyclic and connected variant of the (σ, ρ)-Dominating Set problems. More precise running
times are given in Section 4.2.

Theorem 2.54 (Subsection 4.2.3). Given an n-vertex graph G and a rooted layout L of G, any
Connected (σ, ρ)-Dominating Set problem and Connected Co-(σ, ρ)-Dominating Set
problem can be solved in time s-necd(L)3 · s-nec1(L)O(1) · log(s-necd(L)) · n3 with d a constant
that depends only on (σ, ρ).

Theorem 2.55 (Subsection 4.2.4). For each f ∈ {mw, rw, rwQ,mim}, given an n-vertex graph
G and a rooted layout L of G, any AC-(σ, ρ)-Dominating Set problem and Acyclic (σ, ρ)-
Dominating Set problem can be solved in time s-nec2(L)3 · s-nec1(L)O(1) · Nf (L)O(1) · n3, with
d a constant that depends only on (σ, ρ) and where Nf (L) is the term defined in Table 2.2.

Table 2.2: Values of Nf (L) for every rooted layout L and for each f ∈ {mw, rw, rwQ,mim}.

f mw rwQ rw mim

Nf (L) 2mw(L) · 2n 2rwQ(L) log2(2rwQ(L)+1) · 2n 22rw(L)
2 · 2n 2n2mim(L)+1

We deduce the following corollary from Theorems 2.53-2.55 and the upper bounds on the
d-neighbor width from Theorem 2.33.

1Up to a constant in the exponent.
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Corollary 2.56. Given an n-vertex graph G and a rooted layout L of G, we can solve any
(σ, ρ)-Dominating Set problem, Connected (σ, ρ)-Dominating Set problem, AC-(σ, ρ)-
Dominating Set problem, and Acyclic (σ, ρ)-Dominating Set problem within the following
running times

• (d+ 1)O(mw(L)) · nO(1),

• (d · rwQ(L) + 1)O(rwQ(L)) · nO(1),

• 2O(d·rw(L)2) · nO(1),

• 2O(boolw(L)) · nO(1) if d = 1 and 2O(d·boolw(L)2) · nO(1) otherwise.

• nO(d·mim(L)).

with d a constant that depends only on (σ, ρ).

Corollary 2.56 reveals the power and the generality of the d-neighbor equivalence when it
comes to solve NP-hard problems. Indeed, the running times presented in this corollary are (up
to a constant in the exponents) the best known for solving NP-hard problems for each width
measure. In the following, we give the lower bounds for two (σ, ρ)-Dominating Set problems:
Independent Set (IS for short) and Dominating Set (DS for short). We choose these two
problems because they seem to be somehow the easiest problems among the NP-hard (σ, ρ)-
Dominating Set problems. These lower bounds hold also for many other NP-hard problems
dealt with in Corollary 2.56 such as Feedback Vertex Set, Vertex Cover, Connected
Vertex Cover, Connected Dominating Set, etc.

Theorem 2.57 ([82, 83]). Unless ETH fails, there is no 2o(n) time algorithm for IS and DS
where n is the number of vertices of the input graph.

In fact, Theorem 2.57 holds for every graph problem Π that has a linear reduction from
3-SAT, i.e., we can transform each instance of 3-SAT with N variables and M clauses into an
instance of Π with O(N +M) vertices.

From Theorem 2.57, we deduce the following corollary.

Corollary 2.58. For each f ∈ {cw, rw, rwQ, boolw}, unless ETH fails, there is no 2o(f(L)) · nO(1)

time algorithm for IS and DS where n is the number of vertices of the input graph and L a
given rooted layout of the input graph G.

Proof. For every layout L of G and for each f ∈ {cw, rw, rwQ, boolw,mim}, we have f(L) ≤ n.
Thus the existence of a 2o(f(L)) · nO(1) time algorithm for IS (resp. DS) implies that IS (resp.
DS) are solvable in time 2o(n). By Theorem 2.57, this is not possible unless ETH fails.

We deduce that, for IS and DS, the running times presented in Corollary 2.56 are asymp-
totically optimal under ETH for clique-width and boolean-width (because d = 1 for these two
problems).

The optimality of the other running times presented in Corollary 2.56 for IS and DS and
the other parameters is open. The following open question concerns rank-width, a similar open
question holds also for Q-rank-width.

Open Question 2.59. Given an n-vertex graph with a rooted layout L, can we solve the problem
IS (or DS) in time 2o(rw(L)

2) · nO(1)?

Concerning mim-width, we have no tight lower bound under ETH but the following W[1]-
hardness result from [61, Corollary 4].
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Theorem 2.60 ([61]). The problems that ask, given a graph G and a linear layout L of G,
respectively, for the computation of an independent set of size k and a dominating set of size k,
are W[1]-hard parameterized by k +mim(L).

It is worth mentioning that Jaffke, Kwon, and Telle [84] have proved the same statement
for the Maximum Induced Forest problem. Consequently, IS, DS, and Feedback Vertex
Set are W[1]-hard parameterized by mim-width even when a rooted layout is given as input.

Classical problems that are W[1]-hard parameterized by clique-width

Now, we present some algorithmic results concerning the following problems: Max-Cut, Edge
Dominating Set (EDS), Graph Coloring (GC), and Hamiltonian Cycle (HC). For
tree-width and clique-width, we have a precise idea on the parameterized complexity of these
problems since, for each problem, we have an upper bound which asymptotically matches the best
known lower-bound. For rank-width, we only have some upper bounds thanks to [67]. Some para-
NP-hardness results are known for mim-width. However, for Q-rank-width and boolean-width,
the only algorithmic results we know are those we can deduce from the results on clique-width
or rank-width and the known upper bounds between these parameters.

We start by presenting the results concerning clique-width.
The following theorem provides asymptotically tight lower bounds and upper bounds for

Max-Cut, Edge Dominating Set and Hamiltonian Cycle.

Theorem 2.61 (Section 4.4 and [59, 60]). There exist algorithms that, given an n-vertex graph
G together with a k-expression, solve in time nO(k) the problems Max-Cut, Edge Dominating
Set and Hamiltonian Cycle. Moreover, even when a k-expression is given as input, Max-
Cut, Edge Dominating Set, and Hamiltonian Cycle are not solvable in time f(k) ·no(k),
for any function f , unless ETH fails.

Hence, Max-Cut, EDS, and HC have the same behavior towards clique-width. The fol-
lowing theorem reveals that Graph Coloring behave quite differently than the other three
problems.

Theorem 2.62 ([74, 100]). There exists an algorithm that, given an n-vertex graph G and a
k-expression of G, solves Graph Coloring in time n2O(k). Moreover, unless ETH fails, Graph
Coloring cannot be solved in time f(k) · n2o(k) for any function f even when a k-expression is
given as input.

Theorems 2.61 and 2.62 give us a precise idea on the complexities of the problems Max-
Cut, EDS, HC, and GC parameterized by clique-width. The main drawback of these theorems
is that they mainly use ad hoc techniques and ideas which works well only for clique-width.
Using the same ideas for the other parameters would not give efficient algorithms. For example,
we deduce, from Theorem 2.23(b) and Theorems 2.61 and 2.62, that Max-Cut, EDS, and HC

can be solved in time n2O(rw(G)) and GC can be solved in time n22
O(rw(G))

. Ganian, Hliněný, and
Obdržálek [67] showed the following theorem which proves that we can do better than n22

O(rw(G))

for GC.

Theorem 2.63 ([67]). There exists an algorithm that, given an n-vertex graph G and a rooted
layout L of G as input, solves Graph Coloring in time n2O(rw(L)2) .

In fact, Ganian, Hliněný, and Obdržálek [67] developed a framework to design XP algorithms
for rank-width and bi-rank-width, a natural extension of rank-width to directed graphs intro-
duced by Kanté [92]. However, this framework is quite complex and does not always beat the
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naive algorithms we can obtain from the algorithms parameterized by clique-width and Theorem
2.23.

Pinning down the right exponent of n for these problems and for (Q-)rank-width and boolean-
width remains open. Concerning mim-width, we know that HC and GC are para NP-hard thanks
to the two following theorems.

Theorem 2.64 ([86]). Hamiltonian Cycle is NP-hard on graphs of linear mim-width 1 even
when a linear layout of mim-width 1 is given.

Theorem 2.65 ([5, 69]). Graph Coloring is NP-hard on graphs of linear mim-width 2 even
when a linear layout of mim-width at most 2 is given.

Proof. We know that Graph Coloring is NP-hard on Circular Arc graphs [69]. Belmonte and
Vatshelle [5] proved that Circular Arc graphs have linear mim-width at most 2 and that we can
compute for these graphs a linear layout of mim-width at most 2.

To the best of our knowledge, the complexity of Max-Cut and EDS parameterized by mim-
width remains open. In fact, we do not even know whether Max-Cut is solvable in polynomial
time on Interval graphs (which are known to have linear mim-width 1 thanks to [5]).

We conclude this section with some general open questions concerning the problems Max-
Cut, EDS, HC, and GC.

Open Question 2.66. Can we unify the algorithmic results for clique-width provided by Theo-
rems 2.61 and 2.62? Can we design a framework similar to the one for (σ, ρ)-Dominating Set
problems for handling the problems which are W[1]-hard parameterized by clique-width? Is the
notion of d-neighbor equivalence also useful for this kind of problems?

Let us give some hints about how to solve these questions. The first step would be to define
a family of problems that includes Max-Cut, EDS, HC. For doing so, we can generalize the
concepts of (σ, ρ)-dominating set as follows. Given a graph G and a pair (σ, ρ) of finite or co-finite
subsets of N, we say that a set of edges F ⊆ E(G) is a (σ, ρ) edge dominating set if

• for every edge f ∈ F , the number of edges in F incident to f belongs to σ and

• for every edge e ∈ E(G) \ F , the number of edges in F incident to e belongs to ρ.

This notion of (σ, ρ) edge dominating set generalizes both the notion of Hamiltonian cycle and
edge dominating set. Indeed, an edge dominating set is simply an (N,N+) edge dominating
set and a Hamiltonian cycle is a ({2},N) edge dominating set of maximum size and with G|F
connected. However, this family of problems does not seem to include the Max-Cut problem.

Nevertheless, can we use the d-neighbor equivalence for these three problems? As these
problems are W[1]-hard parameterized by clique-width and HC is para NP-hard parameterized
by mim-width, we cannot expect the d-neighbor equivalence for d a constant to be useful. Maybe,
we can avoid this dead-end by using the d-neighbor equivalence with d = n.

Recently, Bergougnoux and Kanté [6] proved that, given an n-vertex graph and a rooted
layout L, we can solve Max Cut in time s-necn(L)O(1) · nO(1). For every rooted layout of
a graph G, they proved that s-necn(L)O(1) is upper bounded by nmw(A), nrwQ(A) and n2rw(A) .
Consequently, the result of [6] implies that Max Cut is solvable in time nO(mw(L)), nO(rwQ(G))

and n2O(rw(G)) . It is worth mentioning that contrary to the algorithm for Max Cut given in [59],
there is no need to assume that the graph is given with a clique-width expression as the algorithm
can in [6] be parameterized by Q-rank-width, which is always smaller than clique-width and for
which also a fast FPT (3k + 1)-approximation algorithm exists [121].
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Chapter 3

Two new cousins of clique-width

In this chapter, we introduce and study two new width measures: B-rank-width and N-rank-
width. In Section 3.1, we define these two parameters from algebra. In Section 3.2, we prove
several properties on these parameters. We talk about their computational hardness in Section
3.3 and we compare them to other width measures in Section 3.4. Finally, we express our deep
disappointment concerning these two new width parameters in Section 3.5.

3.1 Definitions

These two parameters are defined from the algebraic structure called commutative semiring.
This concept is defined from the notion of monoid.

A monoid is a pair (R, ∗) with R a set and ∗ : R×R → R verifying the following properties:

• Associativity: for all a, b, c ∈ R, we have (a ∗ b) ∗ c = a ∗ (b ∗ c),

• Identity element: there exists an element e ∈ R (called identity element), such that for
every element a ∈ R, we have e ∗ a = a ∗ e = a.

A monoid (R, ∗) is commutative if for every element a, b ∈ R, we have a ∗ b = b ∗ a.
A commutative semiring is a tuple (R,∔, ∗) where (R,∔) and (R, ∗) are two commutative

monoids with identity elements, respectively, 0 and 1, and we have the following properties:

• Distributivity: for every a, b, c ∈ R, we have a · (b∔ c) = (a ∗ b)∔ (a ∗ c),

• Multiplication by 0 annihilates R: for all a ∈ R, we have a ∗ 0 = 0.

Unlike rings, we do not require that each element must have an additive inverse.
In order to define B-rank-width, we use the Boolean semiring B := ({0, 1},∨,∧) where ∨

and ∧ corresponds respectively to the logical disjunction and the logical conjunction. Contrary
to GF (2), 1 has no inverse for the addition in B since 1 ∨ 1 = 1 and 1 ∨ 0 = 1.

To define N-rank-width, we use the natural semiring (N,+, ·) where + and · are the ordinary
addition and multiplication.

Similarly to linear algebra, we can define the span of a vector set for semirings. For doing
so, we need the following notions. Let R := (R,∔, ∗) be a commutative semiring and k ∈ N+.
We denote by Rk the set of all sequences of length k whose elements belong to R. Given v =
(v1, . . . , vk), v

′ = (v′1, . . . , v
′
k) ∈ Rk, the vector denoted by v∔v′ equals (v1∔v′1, . . . , vk∔v′k) and

given a ∈ R, the vector denoted by a∗v equals (a∗v1, . . . , a∗vk). Given a subset S = {v1, . . . , vr}
of Rk, the span of S over R, denote by ⟨S,R⟩, is the set of all vectors v in Rk such that there
exist a1, . . . , ar ∈ R such that v = (a1 ∗ v1)∔ (a2 ∗ v2)∔ · · ·∔ (ar ∗ vr).
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Given S ⊆ Rk and a matrix M with k columns whose entries belong to R, we say that S is
an R-generator of M if every row vector of M belongs to ⟨S,R⟩. Observe that, if R is a field,
then the rank of M over R corresponds to the size of a minimum R-generator of M .

For example, let M be the matrix with rows (1, 1, 0), (0, 1, 1) and (1, 1, 1). The sum of the
vectors (1, 1, 0) and (0, 1, 1) over B,N and GF (2) equals, respectively, (1, 1, 1), (1, 2, 1), and
(1, 0, 1). Consequently, the rank of M over B is 2 and the rank of M over N or GF (2) equals 3.

In the following, we give the definition of B-rank-width and N-rank-width.

Definition 3.1 (B-rank-width). For every graph G, the B-rank-width of a graph G corresponds
to the rwG

B -width of G where rwG
B : 2V (G) → N is a function such that rwG

B (A) is the minimum
size of a B-generator of MA,A.

Definition 3.2 (N-rank-width). For every graph G, the N-rank-width of a graph G corresponds
to the rwG

N -width of G where rwG
N : 2V (G) → N is a function such that rwG

N (A) is the minimum
size of a (N,+, ·)-generator of MA,A.

When the underlying graph G is clear from context, we may simply write rwB and rwN
instead of rwG

B and rwG
N .

3.2 Properties

In this section, we compare the values of B-rank-width and N-rank-width with module-width
and rank-width. We start with the following observation.

Observation 3.3. Let M be a binary matrix with k columns and S be an (N,+, ·)-generator of
M . The set S ∩ {0, 1}k is an (N,+, ·)-generator and a B-generator S of M . Consequently, for
every graph G and A ⊆ V (G), we have rwB(A) ≤ rwN(A) and rwB(G) ≤ rwN(G).

Proof. Let v ∈ {0, 1}k. Observe that if there exist a1, . . . , ar ∈ N and v1, . . . , vr ∈ Nk such that
v = (a1 · v1) + (a2 · v2) + · · ·+ (ar · vr), then, for every i ∈ [r], we have the following:

• ai ∈ {0, 1},

• if vi /∈ {0, 1}k, then ai = 0,

• for every j ∈ [r] with j ̸= i and each ℓ ∈ [k], if the ℓth coordinates of vi and vj are 1 then
either ai = 0 or aj = 0.

We deduce that S ∩ {0, 1}k is an (N,+, ·)-generator of M . Since ai ∈ {0, 1} and ai · c = ai ∧ c
for every i ∈ [r] and c ∈ {0, 1}, we conclude that S ∩ {0, 1}k is also a B-generator of M .

Now, we prove that rwB(A) and rwN(A) both correspond to some biclique cover problems.
Let us give some definitions. A biclique is a bipartite graph (A∪B,E) such that A and B are two
independent sets and E = {ab : a ∈ A and b ∈ B}. Given a graph G, we say that B is a biclique
of G if B is a biclique and a subgraph of G. Let G be a graph. Given A ⊆ V (G), a biclique
cover of G[A,A] is a collection {B1, . . . , Bk} of bicliques of G[A,A] such that E(G[A,A]) =⋃

i∈[k]E(Bi). We say that a biclique cover {B1, . . . , Bk} of G[A,A] is a biclique partition of
G[A,A] if the bicliques B1, . . . , Bk are pairwise edge-disjoint. We define bic-cover : 2V (G) → N
and bic-part : 2V (G) → N such that bic-cover(A) (resp. bic-part(A)) is the minimum k ∈ N such
that there exists a biclique cover (resp. biclique partition) of G[A,A] of size k.

Lemma 3.4. For every graph G and every A ⊆ V (G), we have rwB(A) = bic-cover(A) and
rwN(A) = bic-part(A).
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Proof. Let G be a graph, A ⊆ V (G) and t = |A|. For each i ∈ [t], we denote by vi the vertex in
A which is associated with the ith column of MA,A.

We begin by proving that rwB(A) ≤ bic-cover(A) and rwN(A) ≤ bic-part(A). Let {B1, . . . , Bk}
be a biclique cover of G[A,A]. For every i ∈ [k], we associate Bi with a row vector bi :=
(b1i , . . . , b

t
i) such that, for every j ∈ [t], if vj ∈ V (Bi), then bji := 1, otherwise bji := 0. We claim

that {b1, . . . , bk} is a B-generator of MA,A.
Let v ∈ A and bv be the row vector of MA,A associated with v. Since {B1, . . . , Bk} is

a biclique cover, we deduce that, for every u ∈ NG(v) ∩ A, there exists i ∈ [k] such that
uv ∈ E(Bi) and V (Bi)∩A ⊆ NG(v)∩A. Hence, there exist ℓ1, . . . , ℓt ∈ [k] such that NG[A,A](v) =(
V (Bℓ1) ∪ V (Bℓ2) ∪ · · · ∪ V (Bℓt)

)
∩A. Consequently, we have bℓ1 ∨ bℓ2 ∨ · · · ∨ bℓt = bv.

Observe that if {B1, . . . , Bk} is a biclique partition of G[A,A], then for every i, j ∈ [t] such
that i ̸= j, we have (V (Bℓi) ∩ V (Bℓj )) ∩A = ∅ and thus bℓ1 + bℓ2 + · · ·+ bℓt = bv.

We conclude that {b1, . . . , bk} is a B-generator of MA,A and if {B1, . . . , Bk} is a biclique
partition of G[A,A], then {b1, . . . , bk} is an (N,+, ·)-generator of MA,A. It follows that rwB(A) ≤
bic-cover(A) and rwN(A) ≤ bic-part(A).

Finally, it remains to prove that bic-cover(A) ≤ rwB(A) and bic-part(A) ≤ rwN(A). Let
S = {b1, . . . , bk} be a B-generator of MA,A. For each i ∈ [k], we write bi := (b1i , . . . , b

t
i). For every

v ∈ A, let S(v) be a subset of S such that the row vector of MA,A associated with v equals∨
b∈S(v) b.

For every i ∈ [k], we associate the row vector bi = (b1i , . . . , b
t
i) with a biclique Bi := (Ai ∪

Ai, Ei) where

• Ai ⊆ A such that vj ∈ Ai iff bji = 1,

• Ai := {v ∈ A : bi ∈ S(v)},

• Ei := {aa : a ∈ Ai and a ∈ Ai}.

We deduce that B1, . . . , Bk are subgraphs of G[A,A] because S is a B-generator, for every v ∈ A
and b ∈ S(v), if an entry of b associated with a vertex u ∈ A equals 1, then vu ∈ E(G[A,A]).
It follows that each Bi is a subgraph of G[A,A]. By definition of S(v), for every v ∈ A, we
have N(v) =

⋃
bi∈S V (Bi)∩A. Hence, {B1, . . . , Bk} is a biclique-cover of G[A,A] and rwB(A) ≤

bic-cover(A).
If S is an (N,+, ·)-generator of M [A,A], then, for every i, j ∈ [k] with i ̸= j, we have

E(Bi)∩E(Bj) = ∅. Indeed, in this case, for every v ∈ A and bi, bj ∈ S(v), if i ̸= j, then, for all
ℓ ∈ [t], we cannot have bℓi = bℓj = 1 (since 1 + 1 = 2). We deduce that, for every i, j ∈ [k] with
i ̸= j, we have either V (Bi) ∩ V (Bj) ∩ A = ∅ or V (Bi) ∩ V (Bj) ∩ A = ∅. We conclude that if
S is an (N,+, ·)-generator of M [A,A], then {B1, . . . , Bk} is a biclique partition of G[A,A].

By Observation 3.3, we know that for every (N,+, ·)-generator S ′ of MA,A, the set S ′∩{0, 1}t
is an (N,+, ·)-generator and a B-generator of MA,A. Thus, we can construct a biclique partition
of G[A,A] of size rwN(A). We conclude that bic-part(A) ≤ rwN(A).

Lemma 3.4 implies in particular that rwB and rwN are symmetric set functions since, by
definition, bic-cover and bic-part are two symmetric set functions. With these properties, we are
now ready to prove some results on B-rank-width and N-rank-width.

3.3 Computation hardness

In this section, we give some complexity lower bounds on the computation of the B-rank-width
and the N-rank-width of graphs. For doing so, we use a meta-theorem of Sæther and Vatshelle
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[128] reducing the computation of the set function to the width of a graph. This meta-theorem
uses the following definition of C-satisfying cut-function.

Definition 3.5 ([128]). A set function fG is a C-satisfying cut-function if fG satisfies the fol-
lowing constraints for every graph G and S ⊆ V (G):

(1) fG(S) = fG(S) and fG(S) depends only on the graph G[S, S].

(2) fG(S) = 0 if G[S, S] has no edges and at least one otherwise.

(3) Removing a vertex x ∈ S does not increase fG(S), and reduce fG(S) by at most one.

(4) If G[S, S] is the disjoint union of G1[A1, B1] and G2[A2, B2], then fG(S) = fG1(A1) +
fG2(A2).

(5) If v ∈ S has a twin vertex1 in G[S, S], then fG(S) = fG[V (G)\v](S).

Except mw all the set functions we deal with in this thesis are C-satisfying cut-functions. In
particular, it is quite easy to check that rwG

B and rwG
N are two C-satisfying cut-functions. This

follows from the fact that for every graph G and A ⊆ V (G), we have rwB(A) = bic-cover(A) and
rwN(A) = bic-part(A).

Sæther and Vatshelle [128] proved the following theorem on the computation of C-satisfying
cut functions.

Theorem 3.6 ([128]). Given a graph G, a subset A ⊆ V (G), k ∈ N+ and a C-satisfying function
fG : 2V (G) → R, we can construct in polynomial time, a graph GA such that the f-width of GA

is at most k + ⌊k⌋+ 1 if and only if f(A) ≤ k.

Deciding whether rwB(A) ≤ k and rwN(A) ≤ k for some k ∈ N is known to be NP-hard from
[90, 114]. Moreover, Chandran, Issac, and Karrenbauer [22] have proved that, given a graph G,
A ⊆ V (G) and k ∈ N, there is no 22

o(k) · nO(1) time algorithm that decides whether rwB(A) ≤ k
unless ETH fails. From these hardness results and Theorem 3.6, we deduce the following theorem
on the problems rwB-Width and rwN-Width.

Theorem 3.7. Both rwB-Width and rwN-Width are NP-hard. Moreover, there is no 22
o(k) ·

nO(1) time algorithm for rwB-Width unless ETH fails.

3.4 Relation with other width measures

In this section, we compare the values of B-rank-width and N-rank-width with other width
measures such as module-width and rank-width.

Theorem 3.8. For any graph G and every A ⊆ V (G), we have

(a) rwN(A) ≤ mw(A),

(b) mw(A) ≤ 2rwB(A),

(c) rwQ(A) ≤ rwN(A),

(d) boolw(A) ≤ rwB(A) and nec1(A) ≤ 2rwB(A),

(e) s-necd(A) ≤ 2d·rwB(A)2 for every d ∈ N+,
1A twin vertex of a vertex v is a vertex with the same closed neighborhood as v.
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(f) s-necd(A) ≤ (d+ 1)rwN(A) for every d ∈ N+.

Proof. Let A ⊆ V (G) and t = |A|. Upper bound (a) follows from the fact that mw(A) equals
the number of different rows in the matrix MA,A which is trivially an upper bound on rwN(A).
Upper bound (b) is due to the fact that the size of the span of a B-generator of size k is
at most 2k. Consequently, the number of different rows of MA,A is at most 2rwB(A) and thus
mw(A) ≤ 2rwB(A).

Concerning Upper bound (c), observe that, since N ⊆ Q, for every t ∈ N and S ⊆ Nt, we
have ⟨S, (N,+, ·)⟩ ⊆ ⟨S, (Q,+, ·)⟩. Since rwQ(A) equals the size of a minimum size of (Q,+, ·)-
generator of MA,A, we deduce that rwQ(A) ≤ rwN(A).

For Upper bound (d), notice that any sum of rows of MA,A over B belong to the span of a
B-generator of MA,A. As nec1(A) := |{N(X)∩A : X ⊆ A}|, we deduce that nec1(A) ≤ 2rwB(A).
As boolw(A) := log2(nec1), we have that boolw(A) ≤ rwB(A).

Upper bound (e) is implied by Upper bound (d) and Theorem 2.33(e), i.e., s-necd(A) ≤
2d·boolw(A)2 .

The last upper bound follows from the fact that any sum of rows of MA,A over N belong to
the span of an (N,+, ·)-generator of MA,A. Let S be a minimum (N,+, ·)-generator of MA,A. we
deduce that necd(A) ≤ (d+ 1)rwN(A) from the following inequality

necd(A) ≤ |{0, . . . , d}t ∩ ⟨S, (N,+, ·)⟩ | ≤ (d+ 1)|S| = (d+ 1)rwN(A).

From Theorem 3.8 and the results presented in Section 2.3, we deduce the following upper
bounds on the value of rwB and rwN over vertex cuts.

Corollary 3.9. For any graph G and every A ⊆ V (G), we have:

(a) rw(A) ≤ rwQ(A) ≤ rwN(A) ≤ mw(A) ≤ 2rwB(A).

(b) rwB(A) ≤ rwN(A) ≤ mw(A) ≤ 2rw(A),

Proof. By Theorem 2.23, we know that for every A ⊆ V (G), we have mw(A) ≤ 2rw(A). By
Observation 3.3, we know that rwB(A) ≤ rwN(A). To deduce (a) we need the fact that rw(A) ≤
rwQ(A) from Theorem 2.25 and Upper bounds (b) and (c) of Theorem 3.8. We deduce (b) from
these inequalities and from Theorem 3.8(a).

The following theorem proves that Inequality (a) of Corollary 3.9 is tight over vertex cuts.

Theorem 3.10. For every k ∈ N, there exist a graph Gk and A ⊆ V (G) such that rwB(A) = k
and rw(A) = 2k − 1.

Proof. For every k ∈ N, we define the set Ak := {aS : S ⊆ [k]}, Bk := {bS : S ⊆ [k]} and the
the graph Gk = (Ak ∪ Bk, {{aS , bT } : S ∩ T ̸= ∅}). For instance, Figure 3.1 shows G2, this
graph is known as the domino graph.

We claim that rwB(Ak) = k and rw(Ak) = 2k. By definition of Gk, for every S ⊆ {1, . . . , k},
we have N(aS) =

⋃
s∈S N(a{s}). Consequently, the set of row vectors of MA,B associated with

the vertices a{1}, . . . , a{k} is a B-generator of MA,B, we deduce that rwB(A) = k.
Now, we prove that rw(A) = 2k. For a binary matrix M , let us denote by rw(M) the rank of

M over GF (2). For every k ∈ N, we denote by Mk the matrix MAk,Bk
, We also consider Mk the

matrix obtained from Mk such that for every S, T ⊆ [k], we have Mk[aS , bT ] = 1−Mk[aS , bT ],
i.e., M [aS , bT ] = 1 if S ∩ T = ∅ and 0 otherwise. Figure 3.1 shows the matrices M1 and M1.
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a∅ a{1} a{1,2} a{2}

b∅ b{1} b{1,2} b{2} ( b∅ b{1}
a∅ 0 0
a{1} 0 1

) ( b∅ b{1}
a∅ 1 1
a{1} 1 0

)

(a) The graph G2 (b) The matrix M1 (c) The matrix M1

Figure 3.1: Graph Gk with k = 2 and the matrices M1 and M1.

We want to prove by recurrence on k that rw(Mk) = 2k − 1 and rw(Mk) = 2k for every k ∈ N.
Obviously, this is true for M0 and M0 since rw(M0) = 0 and rw(M0) = 1.

For applying the recurrence hypothesis, we consider the total order < on the subsets of N+

where S < T if max(S△T ) ∈ T . For example, we have ∅ < {1} < {2} < {1, 2} < {3} < {1, 3} <
{2, 3} < {1, 2, 3}. For every k ∈ N, we assume that the ith row (resp. column) of Mk and Mk

are associated, respectively, with aS (resp. bS) where S is the ith smallest subset of [k] w.r.t. <.
This way, for every k, the first |Ak|/2 = 2k−1 rows (resp. columns) of Mk and Mk are associated
with the vertices aS (resp. bS) that belongs to Ak−1 (resp. Bk−1), i.e., we have S ⊆ [k − 1].
On the other hand, the last 2k−1 rows (resp. columns) of Mk and Mk are associated with the
vertices aS (resp. bS) with S = T ∪ {k} with T ⊆ [k − 1]. By definition, we deduce that, for
every k ∈ N+, we have

Mk =

 Mk−1 Mk−1

Mk−1 1

 and Mk =

 Mk−1 Mk−1

Mk−1 0

 .

Since rows and columns additions do not change the rank of a matrix and, for every (aS , bT ) ∈
Ak ×Bk, we have Mk[aS , bT ] = 1−Mk[aS , bT ], we deduce the following

rw(Mk) = rw

 Mk−1 Mk−1

0 Mk−1

 = rw

 Mk−1 0

0 Mk−1


Similarly, we deduce the following for Mk.

rw(Mk) = rw

 Mk−1 0

0 Mk−1

 .

It follows that the rank of Mk equals the rank of Mk−1 plus the rank of Mk−1 and the rank of
Mk equals the double of the rank of Mk−1. By recurrence hypothesis, we deduce that the rank
of Mk and Mk are, respectively, 2k − 1 and 2k.

Theorem 3.10 raises the following question which asks whether Inequality (a) of Corollary
3.9 is also tight on graphs.

Open Question 3.11. For every k ∈ N, can we construct a graph G with rwB(G) ∈ O(k) and
rw(G) ∈ 2Ω(k)?

We suspect that Inequality (b) of Corollary 3.9 is tight (at least over vertex cuts). Unfor-
tunately, we were not able to prove this intuition. However, we think that we can prove it by
using the same graphs which have been used in [17] for proving Theorem 2.30. That is, the
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a∅ a{1} a{1,2} a{2}

b∅ b{1} b{1,2} b{2} 
b∅ b{1} b{2} b{1,2}

a∅ 0 0 0 0
a{1} 0 1 0 1
a{2} 0 0 1 1
a{1,2} 0 1 1 0


(a) The graph H2 (b) The matrix MA2,B2

Figure 3.2: Graph Hk with k = 2 and the adjacency matrix between A2 and B2.

graphs {Hk : k ∈ N} where, for every k ∈ N, we have V (Hk) = {aS , bS : S ⊆ [k]} and
E(Hk) = {{aS , bT } : |S ∩ T | is odd}. Figure 3.2 represents the graph H2 and the adjacency
matrix between A2 and B2.

Bui-Xuan, Telle and Vatshelle proved that, for every k ∈ N, we have rw({aS : S ⊆ [k]}) = k.
To prove that Inequality (b) of Corollary 3.9 is tight, it is sufficient to prove the following
conjecture.

Conjecture 3.12. For every k ∈ N, we have rwB(Ak) = 2k − 1.

To prove this conjecture, it is sufficient to prove that, for every k and every biclique B of Hk,
we have |E(B)| ≤ 2k−1. Indeed, it is easy to see that |E(Hk)| = (2k−1)2, hence if every biclique
has at least 2k−1 edges, then any biclique cover of Hk contains at most 2k−1 bicliques.

3.5 Conclusion

We have explored the properties of B-rank-width and N-rank-width; two new width measures
defined from rank-like notions on semirings. They turned out to be equivalent to rank-width
and clique-width for ≤f . That is, they have the same FPT power. We compared the value of
their associated set functions with the values of mw, rw, rwQ, boolw and s-necd. In particular, we
proved that rwB(A) ≤ 2rw(A) and rw(A) ≤ 2rwB(A), for every graph G and A ⊆ V (G).

These properties could make these width measures interesting to obtain efficient running
times. But, as we have seen, computing these two width measures is a tough problem. In partic-
ular, ETH rules out the existence of an efficient FPT algorithm for computing the B-rank-width.

In front of these results, we must admit that we are quite disappointed by these two new
width measures: they do not bring anything new in terms of FPT power and their computations
seem to be a tough challenge. It would be interesting to design new matrix decompositions and
to check whether we can design some interesting width measures or to prove that all the width
measures we can obtain from matrix decompositions are equivalent to clique-width for ≤f .

70



Chapter 4

Fast algorithms for many connectivity
problems

In this chapter, we present our results concerning connectivity problems such as the connected
and acyclic variants of (σ, ρ)-Dominating Set problems, and Hamiltonian Cycle. We refer
to Section 1.4 for the definitions of the families of problems Connected (σ, ρ)-Dominating
Set problems, Acyclic (σ, ρ)-Dominating Set problems, and AC-(σ, ρ)-Dominating Set
problems. Some examples of problems that belong to these families are shown in Table 1.1.

In Section 4.1, we develop a framework of the same flavor as the rank-based approach of
[9], but suitable for clique-width. We use this framework to design 2O(k) · n time algorithms
for Connected (σ, ρ)-Dominating Set problems and the Feedback Vertex Set problem
given a k-expression.

In Section 4.2, we present a framework that generalizes and simplifies the rank-based ap-
proach from [9] and the results developed in Section 4.1. The d-neighbor equivalence relation
is at the core of this framework. We use it to solve any problem that belongs to the following
families of problems:

• Connected (σ, ρ)-Dominating Set problems,

• Acyclic (σ, ρ)-Dominating Set problems,

• AC-(σ, ρ)-Dominating Set problems.

Through this framework, we obtain the best known algorithms1 for the problems which belong to
these families for the parameters clique-width, (Q-)rank-width, boolean-width, and mim-width.

In Section 4.3, we show that we can use the ideas of Section 4.2 to generalize and simplify
the Cut & Count approach of [37]. As a result, we obtain a s-necd(L)O(1) · nO(1) time algorithm
for any Connected (σ, ρ)-Dominating Set problem with d a constant that depends only on
(σ, ρ).

In Section 4.4, we present an XP algorithm that solves Hamiltonian Cycle in time nO(k)

given a k-expression as input. This algorithm beats the naive algorithm of Espelage et al. [49]
that runs in time nO(k2). Moreover, the running time of our algorithm matches asymptotically
the lower bound of Fomin et al. [59] which states that there is no f(k) · no(k) time algorithm for
Hamiltonian Cycle, unless ETH fails.

1Up to a constant in the exponents.
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4.1 Connectivity Problems Parameterized by Clique-Width

In this section, we prove that given an n-vertex graph G and a k-expression of G, we can solve
any (σ, ρ)-Dominating Set problem and the Feedback Vertex Set problem in time 2O(k)·n.

Let us explain the ideas of the algorithms with two examples: (1)Connected Dominating
Set and (2) Maximum Induced Tree.

Let G be a graph, for which a k-expression ϕ is given, and let H be a k-labeled graph arising
in ϕ. It is worth noticing that at the time we are processing the set H, may be not all the
edges between the vertices of H are known (those edges may be added in the forthcoming addi,j
operations). To facilitate the steps of the dynamic programming algorithm, we first assume that
ϕ is an irredundant k-expression.

1. Let D be a connected dominating set of G and let DH := D ∩ V (H). First, D is not
necessarily connected, neither a dominating set of H. So, the usual dynamic programming
algorithm keeps, for each such DH , the pair (R,R′) of sequences over {0, 1}k, where Ri := 1
if and only if DH contains a vertex labeled i, and R′

i := 1 if and only if V (H) has a
vertex labeled i not dominated by DX . One first observes that if DH and D′

H have the
same pair of sequences (R,R′), then DH ∪ DY is a dominating set of G if and only if
D′

H ∪ DY is a dominating set. Therefore, it is sufficient to keep for each pair (R,R′) of
sequences in {0, 1}k the possible partitions of {1, . . . , k} corresponding, informally, to the
connected components of the graphs induced by the DH ’s, and for each possible partition,
the maximum weight among all corresponding DH ’s. Notice that the graphs H[DH ] are
not necessarily induced subgraphs of G. One easily checks that these tables can be updated
without difficulty following the clique-width operations in time kO(k) · nO(1).

In order to obtain 2O(k) · n time algorithms, we modify this algorithm so that we do not
guess, via R′, the existence of vertices labeled i that are not dominated, but rather the
existence of a vertex that will dominate the vertices labeled i (even if they are already
dominated in H by DH). The partition associated with a partial solution DH takes into
account these guesses by considering the i-vertices of DH as one vertex if R′

i = 1 for each
i ∈ [k]. With these modifications, the steps of our dynamic programming algorithms can
be described in terms of the operations on partitions defined in [9]. We can therefore use
the same notion of representativity in order to reduce the time complexity.

2. We consider this example because we reduce the computation of a minimum feedback
vertex set to that of a maximum tree. We first observe that we cannot use the same trick
as in [9] to ensure the acyclicity, that is counting the number of edges induced by the partial
solutions. Indeed, whenever an addi,j operation is used, many edges can be added at the
same time. Hence, counting the edges induced by a partial solution would imply to know,
for each partial solution, the number of vertices labeled i, for each i. But, this automatically
leads to an nO(k) time algorithm. We overcome this difficulty by first defining a binary
relation acyclic on partitions where acyclic(p, q) holds whenever there are forests E and F ,
on the same vertex set, such that E ∪ F is a forest, and p (resp. q) corresponds to the
connected components of E (resp. F ). In a second step, we redefine some of the operations
on partitions defined in [9] in order to deal with the acyclicity. These operations are used
to describe the steps of the algorithm. They informally help updating the partitions after
each clique-width operation by detecting partial solutions that may contain cycles. We
also define a new notion of representativity, ac-representativity, where S ′ ac-represents S
if, whenever there is S ∈ S that can be completed into a connected acyclic set, there is
S′ ∈ S ′ that can be completed into a connected acyclic set. We then prove that one can also
compute an ac-representative set of size 2O(k), assuming the partitions are on {1, . . . , k}.
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It remains now to describe the tables of the dynamic programming algorithm. First, we
are tempted to keep for each forest F of H, the partition induced by the transitive closure
of ∼ where i ∼ j whenever there is a vertex x labeled i that is connected in F to a vertex
y labeled j. However, this is not sufficient because we may have in a same connected
component two vertices labeled i, and any forthcoming addi,j operation will create a cycle
in F if there is a vertex labeled j in F . To overcome this difficulty, we index our dynamic
programming tables with functions s that inform, for each i, whether there is a vertex
labeled i in the partial solutions, and if yes, in exactly 1 vertex, or in at least two vertices.
Indeed, knowing the existence of at least two vertices is sufficient to detect some cycles
when we encounter an addi,j operation. We need also to make a difference when we have
all the vertices labeled i in different connected components, or when at least two are in
a same connected component. This will allow to detect all the partial solutions F that
may contain triangles or cycles on four vertices with a forthcoming addi,j operation. Such
cycles cannot be detected by the acyclic binary relation on partitions since this latter does
not keep track of the number of vertices in each label. However, the other kinds of cycles
are detected through the acyclic binary relation. We refer the reader to Subsection 4.1.2
for a more detailed description of the algorithm.

As explained in Section 2.6.2, our algorithms are optimal under ETH. Indeed, unless ETH
fails, there is no 2o(k) · nO(1) time algorithm for the following problems Feedback Vertex
Set, Connected Dominating Set, Connected Vertex Cover and many other NP-hard
Connected (σ, ρ)-Dominating Set problems.

The remainder of the section is organized as follows. The notion of ac-representativity and the
modified operations on partitions are given in Subsection 4.1.1. We also propose the algorithm
for computing an ac-representative set of size 2O(|L|), for sets of weighted partitions on a finite
set L. The algorithms for Feedback Vertex Set and the Connected (σ, ρ)-Dominating
Set problems are given in, respectively, Subsections 4.1.2 and 4.1.3.

4.1.1 Representing Sets of Acyclic Weighted Partitions by Matrices

In this section, we manipulate partitions and for doing so, we use the following notations. A
partition p of a set S is a collection of non-empty subsets of S that are pairwise non-intersecting
and such that

⋃
pi∈p pi = S; each set in p is called a block of p. The set of partitions of a finite set

S is denoted by Π(S), and (Π(S),⊑) forms a lattice where p ⊑ q if for each block pi of p there
is a block qj of q with pi ⊆ qj . The join operation of this lattice is denoted by ⊔. For example,
we have

{{1, 2}, {3, 4}, {5}} ⊔ {{1}, {2, 3}, {4}, {5}} = {{1, 2, 3, 4}, {5}}.

Let #block(p) denote the number of blocks of a partition p. Observe that ∅ is the only partition
of the empty set. A weighted partition is an element of Π(S)× N for some finite set S.

For p ∈ Π(S) and X ⊆ S, let p↓X ∈ Π(X) be the partition {pi ∩X : pi ∈ p} \ {∅}, and for
Y ⊇ S, let p↑Y ∈ Π(Y ) be the partition p ∪

(⋃
y∈Y \S{{y}}

)
.

We recall that a weighted partition is an element of Π(L) × N for some finite set L. Our
algorithms compute a set of weighted partitions A ⊆ Π(L)× N, for each labeled graph H used
in the k-expression of the given graph G and for every subset L ⊆ {i ∈ [k] : lab−1

H (i) ̸= ∅}.
Each weighted partition (p, w) ∈ A ⊆ Π(L) × N is intended to mean the following: there is a
solution S ⊆ V (H) of weight w such that p is the transitive closure of the following equivalence
relation ∼ on L: i ∼ j if there exist an i-vertex and a j-vertex in the same component of H[S].
Moreover, for every label i in L, there is at least one i-vertex in S. For each label i in L, we
expect the i-vertices of S to have an additional neighbor in any extension of S into an optimum
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solution. This way, for each label i ∈ L, we can consider the i-vertices of S as one vertex in terms
of connectivity, since they will have a common neighbor in any extension of S. On the other
hand, the labels j ∈ [k] \ L such that S contains at least one j-vertex are expected to have no
additional neighbor in any extension of S into an optimum solution. Consequently, the vertices
in S with a label in [k] \L do no longer play a role in the connectivity. These expectations allow
us to represent the connected components of H[S] by p. Our algorithms will guarantee that the
weighted partitions computed from (p, w) are computed accordingly to these expectations.

When considering the Feedback Vertex Set problem, as said in the introduction, the
trick used in [9] to deal with acyclicity and that consists in counting the number of edges induced
by the partial solutions would yield an nO(k) time algorithm in the case of clique-width. Since
the partial solutions for the Feedback Vertex Set problem are represented by weighted
partitions, we need to certify that whenever we join two weighted partitions and keep it as
a partial solution, it does not correspond to a partial solution with cycles. We introduce in
the following a notion of acyclicity between two partitions so that we can identify the joins of
partitions which do not produce cycles.

Definition 4.1. Let L be a finite set. We let acy be the relation on Π(L)×Π(L) where acy(p, q)
holds exactly when |L|+#block(p ⊔ q)− (#block(p) + #block(q)) = 0.

Observe that, if Fp := (L,Ep) and Fq := (L,Eq) are forests, then acy(cc(Fp), cc(Fq)) holds if
and only if Ep ∩Eq = ∅ and (L,Ep ⊎Eq) is a forest. The following is then quite easy to deduce.

Fact 4.2. Let L be a finite set. For all partitions p, q, r ∈ Π(L),

acy(p, q) ∧ acy(p ⊔ q, r) ⇔ acy(q, r) ∧ acy(p, q ⊔ r).

Proof. For a partition p ∈ Π(L), let f(p) := |L| − #block(p). One easily checks that acy(p, q)
holds if and only if f(p⊔ q) equals f(p)+f(q). One can therefore deduce, by an easy calculation
from this equivalence, that acy(p⊔ q, r)∧acy(p, q) is equivalent to saying that f(p⊔ q⊔ r) equals
f(p) + f(q) + f(r). The same statement holds for acy(q, r) ∧ acy(p, q ⊔ r).

By definition of acy and of ⊔, we can also observe the following.

Fact 4.3. Let L be a finite set. Let q ∈ Π(L) and let X ⊆ L such that no subset of X is a block
of q. Then, for each p ∈ Π(L \X), we can observe the following equivalences

p↑X ⊔ q = {L} ⇐⇒ p ⊔ q↓(L\X) = {L \X} and (4.1)

acy(p↑X , q) ⇐⇒ acy(p, q↓(L\X)). (4.2)

We modify in this section the operators on weighted partitions defined in [9] in order to
express our dynamic programming algorithms in terms of these operators, and also to deal with
acyclicity. Let L be a finite set. First, for A ⊆ Π(L)× N, let

rmc(A) := {(p, w) ∈ A : ∀(p, w′) ∈ A, w′ ≤ w)}.

This operator, defined in [9], is used to remove all the partial solutions whose weights are not
maximum w.r.t. to their partitions.

Ac-Join. Let L′ be a finite set. For A ⊆ Π(L)×N and B ⊆ Π(L′)×N, we define acjoin(A,B) ⊆
Π(L ∪ L′)× N as

acjoin(A,B) := {(p↑L′ ⊔ q↑L, w1 + w2) : (p, w1) ∈ A, (q, w2) ∈ B and acy(p↑L′ , q↑L)}.

This operator is more or less the same as the one in [9], except that we incorporate the acyclicity
condition. It is used to construct partial solutions while guaranteeing the acyclicity.
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Project. For X ⊆ L and A ⊆ Π(L)× N, let proj(A, X) ⊆ Π(L \X)× N be

proj(A, X) := {(p↓(L\X), w) : (p, w) ∈ A and ∀pi ∈ p, (pi \X) ̸= ∅}.

This operator considers all the partitions such that no block is completely contained in X,
and then removes X from those partitions. We index our dynamic programming tables with
functions that inform on the label classes playing a role in the connectivity of partial solutions,
and this operator is used to remove from the partitions the label classes that are required to
no longer play a role in the connectivity of the partial solutions. If a partition has a block fully
contained in X, it means that this block will remain disconnected in the future steps of our
dynamic programming algorithm, and that is why we remove such partitions (besides those
with cycles).

One needs to perform the above operations efficiently, and this is guaranteed by the following,
which assumes that log(|A|) ≤ |L|O(1) for each A ⊆ Π(L)×N (this can be established by applying
the operator rmc). The following proposition could be easily proved.

Proposition 4.4. The operator acjoin can be performed in time |A| · |B| · |L ∪ L′|O(1) and the
size of its output is upper-bounded by |A| · |B|. The operators rmc and proj can be performed in
time |A| · |L|O(1), and the sizes of their outputs are upper-bounded by |A|.

We now define the notion of representative sets of weighted partitions which is the same
as the one in [9], except that we need to incorporate the acyclicity condition as for the acjoin
operator above.

Definition 4.5. Let L be a finite set and let A ⊆ Π(L)× N. For q ∈ Π(L), let

ac-opt(A, q) := max{w : (p, w) ∈ A, p ⊔ q = {L} and acy(p, q)}.

A set of weighted partitions A′ ⊆ Π(L)× N ac-represents A if for each q ∈ Π(L), it holds that
ac-opt(A, q) = ac-opt(A′, q).

Let Z and L′ be two finite sets. A function f : 2Π(L)×N × Z → 2Π(L′)×N is said to preserve
ac-representation if for each A,A′ ⊆ Π(L) × N and z ∈ Z, it holds that f(A′, z) ac-represents
f(A, z) whenever A′ ac-represents A.

At each step of our algorithm, we will compute a small set S ′ that ac-represents the set
S containing all the partial solutions. In order to prove that we compute an ac-representative
set of S, we show that S = f(R1, . . . ,Rt) with f a composition of functions that preserve ac-
representation, and R1, . . . ,Rt the sets of partial solutions associated with the previous steps
of the algorithm. To compute S ′, it is sufficient to compute f(R′

1, . . . ,R′
t), where each R′

i is an
ac-representative set of Ri. The following lemma guarantees that the operators we use preserve
ac-representation.

Lemma 4.6. The union of two sets in 2Π(L)×N and the operators rmc, proj, and acjoin preserve
ac-representation.

Proof. Let L be a finite set and let A and A′ be two subsets of Π(L) × N. The proof for the
union follows directly from the definition of ac-opt.

Rmc. Let q ∈ Π(L). By the definition of rmc, whenever (p, w) ∈ A is such that p⊔q = {L},
acy(p, q) and ac-opt(A, q) = w, then (p, w) ∈ rmc(A), otherwise there would exist (p, w′) ∈ A
with w′ > w which would contradict w = ac-opt(A, q). Therefore, ac-opt(rmc(A), q) =
ac-opt(A, q). We can then conclude that if A′ ac-represents A, it holds that rmc(A′) ac-
represents rmc(A).
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Projections. Because proj(A, X) = proj(proj(A, x), X \ {x}) for all X ⊆ L and x ∈ X,
we can assume that X = {x}. Let q ∈ Π(L \ {x}). For every (p, w) ∈ A, if {x} ∈ p, then
p ⊔ q↑x ̸= {L}, and (p↓L\x, w) /∈ proj(A, {x}). Otherwise, (p↓L\x, w) ∈ proj(A, {x}), and by Fact
4.3 we have

p↓L\x ⊔ q = {L \ {x}} ⇐⇒ p ⊔ q↑x = {L} and

acy(p↓L\x, q) ⇐⇒ acy(p, q↑x).

Therefore, we have ac-opt(proj(A, {x}), q) = ac-opt(A, q↑x). From this equality, we can con-
clude that proj(A′, {x}) ac-represents proj(A, {x}), for all A′ ⊆ A such that A′ ac-represents A,
that is proj preserves ac-representation.

Ac-Join. Let L′ be a finite set and let B ⊆ Π(L′)× N. Let r ∈ Π(L ∪ L′).
Observe that for all (q, w2) ∈ B, if a subset of L′\L is a block of q↑L⊔r, then for all p ∈ Π(L),

we have p↑L′ ⊔ q↑L ⊔ r ̸= {L ∪ L′}. Therefore, ac-opt(acjoin(A,B), r) = ac-opt(acjoin(A,B′), r)
where B′ is the set of all (q, w) ∈ B such that no subset of L′ \ L is a block of q↑L ⊔ r.

By definition, ac-opt(acjoin(A,B′), r) equals

max{w1 + w2 : (p, w1) ∈ A ∧ (q, w2) ∈ B′ ∧ (p↑L′ ⊔ q↑L ⊔ r) = {L ∪ L′}
∧ acy(p↑L′ , q↑L) ∧ acy(p↑L′ ⊔ q↑L, r)}.

By Fact 4.2, ac-opt(acjoin(A,B′), r) is then equal to

max{w1 + w2 : (p, w1) ∈ A ∧ (q, w2) ∈ B′ ∧ (p↑L′ ⊔ q↑L ⊔ r) = {L ∪ L′}
∧ acy(q↑L, r) ∧ acy(p↑L′ , q↑L ⊔ r)}.

We deduce, by Fact 4.3 and the definition of B′, that ac-opt(acjoin(A,B′), r) equals

max{w1 + w2 : (p, w1) ∈ A ∧ (q, w2) ∈ B′ ∧ (p ⊔ (q↑L ⊔ r)↓L) = {L}
∧ acy(q↑L, r) ∧ acy(p, (q↑L ⊔ r)↓L)}.

Therefore, we can conclude that ac-opt(acjoin(A,B), r) equals

max{w2 + ac-opt(A, (q↑L ⊔ r)↓L) : (q, w2) ∈ B′ ∧ acy(q↑L, r)}.

Therefore, if A′ ac-represents A, then we can conclude that ac-opt(acjoin(A,B), r) equals
ac-opt(acjoin(A′,B), r). As this statement is true for all r ∈ Π(L ∪ L′), we can conclude that
acjoin(A′,B) ac-represents acjoin(A,B) whenever A′ ac-represents A. Symmetrically, we deduce
that acjoin(A,B⋆) ac-represents acjoin(A,B) whenever B⋆ ac-represents B.

In the remaining, we will prove that, for every set A ⊆ Π(L) × N, we can find, in time
|A| · 2O(|L|), a subset A′ ⊆ A of size at most |L| · 2|L| that ac-represents A. As in [9], we will
encode the ac-representativity by a matrix over F2 and show that this one has rank at most the
desired bound. Next, we show that an optimum basis of this matrix ac-represents A and such a
basis can be computed using the following lemma from [9]. The constant ω denotes the matrix
multiplication exponent.

Lemma 4.7 ([9]). Let M be an n ×m-matrix over F2 with m ≤ n and let w : {1, . . . , n} → N
be a weight function. Then, one can find a basis of maximum weight of the row space of M in
time O(nmω−1).

Theorem 4.8. There exists an algorithm reduceacy that, given a set of weighted partitions A ⊆
Π(L)×N, outputs in time |A| · 2(ω−1)·|L| · |L|O(1) a subset A′ of A that ac-represents A and such
that |A′| ≤ |L| · 2|L|−1.
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Proof. If L = ∅, then it is enough to return A′ := {(∅, w)}, where (∅, w) ∈ A and w is
maximum because ∅ is the only partition of the empty set.

Assume from now that L ̸= ∅ (this will ensure that the following definitions exist). Let us
first define the matrix that encodes the property that the join of two partitions corresponds to
a partition arising from a connected solution.

Let v0 be a fixed element of L and let cuts(L) := {(L1, L2) : L1 ⊎L2 = L and v0 ∈ L1}. Let
M and C be, respectively, a (Π(L),Π(L))-matrix and a (Π(L), cuts(L))-matrix, both over F2,
such that

M [p, q] :=

{
0 if p ⊔ q ̸= {L},
1 otherwise.

C[p, (L1, L2)] :=

{
0 if p ̸⊑ (L1, L2),

1 otherwise.

As in [9, 38], we fix an element v0 to ensure that for all p ∈ Π(L), the number of cuts
(L1, L2) such that p⊔ q ⊑ (L1, L2) is odd if and only if p⊔ q = {L}. In fact, this number equals
2#block(p)−1. This property is used in [9] to prove that M = C · Ct.

Let A be a set of weighted partitions. In order to compute an ac-representative set of A,
we will decompose A into a small number of sets Ai. Then, for each set Ai, we compute a set
A′

i ⊆ Ai of Ai such that the union of the sets A′
i ac-represents A. To compute A′

i, we use Lemma
4.7 to find a maximum basis of the row space of C restricted to Ai.

For each 0 ≤ i ≤ |L| − 1, let Ai be the set {p : (p, w) ∈ A and |L| −#block(p) = i}, and let
Ci
A be the restriction of C to rows in Ai. Let Bi be a basis of the row space of Ci

A of maximum
weight, where the weights are the weights2 of the considered weighted partitions in A. Observe
that |Bi| ≤ 2|L|−1 because the rank of Ci

A is bounded by |cuts(L)| = 2|L|−1. For p ∈ Ai, let Bi(p)
be the subset of Bi such that C[p, (L1, L2)] =

∑
q∈Bi(p)

C[q, (L1, L2)] for all (L1, L2) ∈ cuts(L).
Let A′

i be the subset of A corresponding to the rows in Bi, and let A′ := A′
0 ⊎ · · · ⊎ A′

|L|−1.
Notice that |A′| ≤ |L| · 2|L|−1.

Since Ci
A has |Ai| rows and 2|L|−1 columns, Ai is computable in time |Ai| · 2|L|−1 · |L|O(1).

By Lemma 4.7, we can compute Bi in time |Ai| · 2(ω−1)·|L| · |L|O(1). Hence, we can compute A′

in time |A| · 2(ω−1)·|L| · |L|O(1) because {A0, . . . ,A|L|−1} is a partition of {p : (p, w) ∈ A}.
It remains now to show that A′ ac-represents A. First, let us show that for all p ∈ Ai and

r ∈ Π(L), if M [p, r] = 1, then there is q ∈ Bi(p) such that M [q, r] = 1. Now, from the equality
M = C · Ct, we have

M [p, r] =
∑

(L1,L2)∈cuts(L)

C[p, (L1, L2)] · Ct[(L1, L2), r]

=
∑

(L1,L2)∈cuts(L)

 ∑
q∈Bi(p)

C[q, (L1, L2)]

 · Ct[(L1, L2), r]

=
∑

q∈Bi(p)

 ∑
(L1,L2)∈cuts(L)

C[q, (L1, L2)] · Ct[(L1, L2), r]


=

∑
q∈Bi(p)

M [q, r].

So, M [p, r] = 1 if and only if there is an odd number of q ∈ Bi(p) such that M [q, r] = 1.
2We can assume w.l.o.g. that A = rmc(A), and thus for each p ∈ A, there is a unique w ∈ N such that

(p, w) ∈ A.
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Since by construction A′ ⊆ A, for each q ∈ Π(L), we have ac-opt(A, q) ≥ ac-opt(A′, q).
Assume towards a contradiction that A′ does not ac-represent A. Thus, there is q ∈ Π(L) such
that ac-opt(A, q) > ac-opt(A′, q), and hence there is (p, w) ∈ A \ A′ such that p ⊔ q = {L},
acy(p, q) holds and w > ac-opt(A′, q). Let i := |L| −#block(p). Hence, p ∈ Ai and there exists
p′ ∈ Bi(p) such that M [p′, q] = 1 that is p′ ⊔ q = {L}. Let (p⋆, w⋆) ∈ A′

i such that p⋆ ∈ Bi(p),
p⋆ ⊔ q = {L} and w⋆ is maximum.

Since (p⋆, w⋆) ∈ A′
i, we have |L| − #block(p⋆) = |L| − #block(p) = i. We can conclude

that acy(p⋆, q) holds because acy(p, q) holds. Indeed, by definition, acy(p, q) holds if and only if
|L|+#block(p⊔ q)− (#block(p) +#block(q)) = 0. Since p⊔ q = {L}, we deduce that acy(p, q)
holds if and only if i = |L|+ 1−#block(q). Because p⋆ ⊔ q = {L} and |L| −#block(p⋆) = i, we
can conclude that acy(p⋆, q) holds.

Hence, we have ac-opt(A′, q) ≥ w⋆. Since w > ac-opt(A′, q), it must hold that w > w⋆.
But, (Bi \ {p⋆}) ∪ {p} is also a basis of Ci

A since the set of independent row sets of a matrix
forms a matroid. Since w > w⋆, the weight of (Bi \{p⋆})∪{p} is strictly greater than the weight
of Bi, yielding a contradiction.

4.1.2 Feedback Vertex Set

We will use the weighted partitions defined in the previous section to represent the partial
solutions. At each step of our algorithm, we will ensure that the stored weighted partitions
correspond to acyclic partial solutions. However, the framework in the previous section deals
only with connected acyclic solutions. So, instead of computing a maximum induced forest (the
complementary of a minimum feedback vertex set), we will compute a maximum induced tree.
As in [9], we introduce a hypothetical new vertex that is universal and denoted by v0, and we
compute a pair (F,E0) so that F is a maximum induced forest of G, E0 is a subset of edges
incident to v0, and (V (F ) ∪ {v0}, E(F ) ∪ E0) is a tree. In order now to reduce the sizes of the
dynamic programming tables, we will express the steps of the algorithm in terms of the operators
on weighted partitions defined in the previous section.

Let us explain the idea of the algorithm before defining the dynamic programming tables
and the steps. Let H be a k-labeled graph. We are interested in storing ac-representative sets of
all induced forests of H that may produce a solution. If F is an induced forest of H, we would
like to store the partition p corresponding to the quotient set of the transitive closure of the
relation ∼ on V (F ) where x ∼ y if x and y have the same label or are in the same connected
component. If J ⊆ [k] is such that

⋃
x∈V (F ) labH(x) = J , then this is equivalent to storing the

partition p of J where i and j are in the same block if there are, respectively, an i-vertex x and
a j-vertex y in the same connected component of F .

Now, if H is used in a k-expression of a k-labeled graph G, then in the clique-width operations
defining G we may add edges between the i-vertices and the j-vertices of H, for some i, j ∈ J .
Now, this has no effect if there are exactly one i-vertex and one j-vertex at distance one in H[F ],
otherwise cycles may be created, e.g., whenever an i-vertex and a j-vertex are non-adjacent and
belong to the same connected component, or the number of i-vertices and j-vertices are both at
least two. Nevertheless, we are not able to handle all these cases with the operators on weighted
partitions. To resolve the situation where an i-vertex and a j-vertex are already adjacent, we
consider irredundant k-expressions, i.e., whenever an operation addi,j is used there are no edges
between i-vertices and j-vertices. For the other cases, we index the dynamic programming tables
with functions s : [k] → {γ0, γ1, γ2, γ−2} that tell, for each i ∈ [k], if the label class lab−1

H (i)
does not intersect F (s(i) = γ0), or if it does, in one vertex (s(i) = γ1), or in at least two
(s(i) ∈ {γ2, γ−2}) vertices. We have two possible values for label classes intersecting V (F ) in at
least two vertices because whenever two i-vertices belong to the same connected component of
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F , F does not produce a valid solution once an operation addi,ℓ is applied to H with s(ℓ) ̸= γ0.
So, if a label class lab−1

H (i) intersects V (F ) in at least two vertices, since we do not know
whether a clique-width operation addi,ℓ with s(ℓ) ̸= γ0 will be applied to H, we guess it in the
function s, and whenever s(i) equals γ−2, we throw p when we encounter an addi,ℓ operation
(with s(ℓ) ̸= γ0), and if s(i) = γ2, we force F to not having two i-vertices in the same connected
component.

Nonetheless, even though we are able to detect the partitions corresponding to induced
subgraphs with cycles, taking p as the transitive closure of the relation ∼ on [k] described above
may detect false cycles. Indeed, let xi, xj and xℓ, x

′
ℓ be, respectively, an i-vertex, a j-vertex and

two ℓ-vertices, such that xi and xℓ belong to the same connected component in F , and similarly,
xj and x′ℓ to another connected component of F . Now, if we apply an operation addi,j on H, we
may detect a cycle with p (through the acjoin operation), which may not exist when for instance
there are only one i and one j-vertex in F , both in different connected components. We resolve
this case with the functions s indexing the dynamic programming tables by forcing each label i
in s−1(γ2) to wait for exactly one clique-width operation addi,t for some t ∈ [k]. We, therefore,
translate all the acyclicity tests to the acjoin operation. Indeed, the case explained will be no
longer a false cycle as xi and xj will be adjacent (with the addi,j operation), and we know that
xℓ and x′ℓ will be connected to some other vertex in F , and since xi is connected to xℓ and xj
to x′ℓ, we have a cycle. The following notion of certificate graph formalizes this requirement.

Definition 4.9 (Certificate graph of a solution). Let G be a k-labeled graph, F an induced forest
of G, s : [k] → {γ0, γ1, γ2, γ−2}, and E0 a subset of edges incident to v0. Let β be a bijection from
s−1(γ2) to a set V +

s disjoint from V (G)∪ {v0}. The certificate graph of (F,E0) with respect to
s, denoted by CG(F,E0, s), is the graph (V (F ) ∪ V +

s ∪ {v0}, E(F ) ∪ E0 ∪ E+
s ) with

E+
s :=

⋃
i∈s−1(γ2)

{{v, β(i)} : v ∈ (V (F ) ∩ lab−1
G (i))}.

In a certificate graph of (F,E0), the vertices in V +
s represent the expected future neighbors

of all the vertices in V (F ) ∩ lab−1
G (s−1(γ2)). For convenience, whenever we refer to a vertex v+i

of V +
s , we mean the vertex of V +

s adjacent to the i-vertices in CG(F,E0, s). See Figure 4.1 for
an example of a certificate graph.

1

v+2 v+3

2 3 4

v0

5 6 7 8

Figure 4.1: Example of a certificate graph; here p = {{v0, 1}, {2, 3}, {4}}, s−1(γ0) = {7, 8},
s−1(γ1) = {1, 4}, s−1(γ2) = {2, 3} and s−1(γ−2) = {5, 6}. The set V +

s is {v+2 , v
+
3 } with v+2

mapped to 2 and v+3 mapped to 3.

We are now ready to define the sets of weighted partitions whose representatives we manip-
ulate in our dynamic programming tables.
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Definition 4.10 (Weighted partitions in AG[s]). Let G be a k-labeled graph and let s : [k] →
{γ0, γ1, γ2, γ−2} be a total function. The entries of AG[s] are all weighted partitions (p, w) ∈
Π(s−1({γ1, γ2})∪ {v0})×N such that there exist an induced forest F of G and E0 ⊆ {v0v : v ∈
V (F )} so that w(V (F )) = w, and

1. The sets s−1(γ0) = {i ∈ [k] : |V (F ) ∩ lab−1
G (i)| = 0} and s−1(γ1) = {i ∈ [k] : |V (F ) ∩

lab−1
G (i)| = 1}.

2. The certificate graph CG(F,E0, s) is a forest.

3. Each connected component C of CG(F,E0, s) has at least one vertex which belongs to
lab−1

G (s−1({γ1, γ2})) ∪ {v0}.

4. The partition p equals (s−1({γ1, γ2}) ∪ {v0})/ ∼ where i ∼ j if and only if an i-vertex is
connected to a j-vertex in CG(F,E0, s), we consider v0 as a v0-vertex.

Conditions (1) and (3) are as explained above, and automatically imply that, for each i in
s−1({γ2, γ−2}), we have |V (F ) ∩ lab−1

G (i)| ≥ 2. Conditions (2) and (4) guarantee that (V (F ) ∪
{v0}, E(F ) ∪ E0) can be extended into a tree, if any. They also guarantee that cycles detected
through the acjoin operation correspond to cycles, and each cycle can be detected with it.

In the sequel, we call any triplet (F,E0, (p,w(F ))) a candidate solution in AG[s] if Condition
(4) is satisfied, and if in addition Conditions (1)-(3) are satisfied, we call it a solution in AG[s].

Given a k-labeled graph G, the size of a maximum induced tree of G corresponds to the
maximum, over all s : [k] → {γ0, γ1, γ2, γ−2} with s−1(γ2) = ∅, of max{w : ({L}, w) ∈ AG[s]}
with L = s−1(γ1) ∪ {v0}. Indeed, by definition, if ({L}, w) belongs to AG[s], then there exist
an induced forest F of G with w(F ) = w and a set E0 of edges incident to v0 such that
(V (F )∪{v0}, E(F )∪E0) is a tree. This follows from the fact that if s−1(γ2) = ∅, then we have
CG(F,E0, s) = (V (F ) ∪ {v0}, E(F ) ∪ E0).

Our algorithm will store, for each k-labeled graph G and for every function s : [k] →
{γ0, γ1, γ2, γ−2}, an ac-representative set tabG[s] of AG[s]. We are now ready to give the dif-
ferent steps of the algorithm, depending on the clique-width operations.

Computing tabG for G = 1(x). For s : {1} → {γ0, γ1, γ2, γ−2}, let

tabG[s] :=


{({{1, v0}},w(x)), ({{1}, {v0}},w(x))} if s(1) = γ1,

{({{v0}}, 0)} if s(1) = γ0,

∅ if s(1) ∈ {γ2, γ−2}.

Since |V (G)| = 1, there are no solutions intersecting the label class lab−1
G (1) on at least two

vertices, and so the set of weighted partitions satisfying Definition 4.10 equals the empty set
if s(1) ∈ {γ2, γ−2}. If s(1) = γ1, there are two possibilities, depending on whether E0 = ∅ or
E0 = {xv0}. We can thus conclude that tabG[s] = AG[s] is correctly computed.

Computing tabG for G = addi,j(H). We can suppose that H is k-labeled. Let s : [k] →
{γ0, γ1, γ2, γ−2}.

(a) If s(i) = γ0 or s(j) = γ0, then let tabG[s] := tabH [s]. We just copy all the solutions
not intersecting lab−1

H (i) or lab−1
H (j). In this case, we do not need to use the operators

reduceacy and rmc since we update tabG[s] with one table from tabH . In the following
cases, we assume that s(i) ̸= γ0 and s(j) ̸= γ0.

80



(b) If s(i) = γ2 or s(j) = γ2, then we let tabG[s] = ∅. In this case AG[s] = ∅. Indeed, for
every set X ⊆ V (G) respecting Condition (1) and for all subsets E0 ⊆ {xv0 : x ∈ X},
the graph CG(X,E0, s) contains a cycle. For example, if s(i) = γ2 and s(j) = γ1, then
the two i-vertices in X are adjacent in CG(X,∅, s) to v+i and to the j-vertex in X, thus
CG(X,∅, s) contains a cycle of length four.

(c) If s(i) = s(j) = γ−2, then we let tabG[s] = ∅. Similarly to Case (b), we have AG[s] = ∅
because every vertex set with two i-vertices and two j-vertices induce a cycle of length
four in G.

(d) Otherwise, we let tabG[s] := rmc(A) with

A := proj(s−1(γ−2) ∩ {i, j}, acjoin(tabH [sH ], {({{i, j}}, 0)})

where sH(ℓ) := s(ℓ), for ℓ ∈ [k] \ {i, j}, and

(sH(i), sH(j)) :=


(γ1, γ1) if s(i) = s(j) = γ1,

(γ2, γ1) if (s(i), s(j)) = (γ−2, γ1),

(γ1, γ2) if (s(i), s(j)) = (γ1, γ−2).

Observe that this case corresponds to s(i), s(j) ∈ {γ1, γ−2} with s(i) = γ1 or s(j) = γ1.
Intuitively, we consider the weighted partitions (p, w) ∈ tabH [sH ] such that i and j belong
to different blocks of p, we merge the blocks containing i and j, remove the elements in
s−1(γ−2) ∩ {i, j} from the resulting block, and add the resulting weighted partition to A.
Notice that it is not necessary to call the operator reduceacy in this case since we update
tabG[s] with only one table from tabH .

Lemma 4.11. Let G = addi,j(H) be a k-labeled graph such that there are no edges between an
i-vertex and a j-vertex in H. For each function s : [k] → {γ0, γ1, γ2, γ−2}, tabG[s] ac-represents
AG[s] assuming that tabH [s′] ac-represents AH [s′] for all s′ : [k] → {γ0, γ1, γ2, γ−2}.

Proof. We first recall that labG(x) = labH(x) for all x ∈ V (G) = V (H). If we are in Cases
(b)-(c), then we are done since we clearly have AG[s] = ∅. Since the used operators preserve
ac-representation, it is enough to prove that in Case (a), we have AG[s] = AH [s], and in Case
(d), we have AG[s] = A if we suppose that tabH [sH ] = AH [sH ]. If we are in Case (a), then
we are done because one easily checks that (F,E0, (p, w)) is a solution in AH [s] if and only if
(F,E0, (p, w)) is a solution in AG[s], i.e., we have AH [s] = AG[s].

Now, we assume that we are in Case (d), that is s(i), s(j) ∈ {γ1, γ−2} with s(i) = γ1
or s(j) = γ1. We can assume w.l.o.g. that s(j) = γ1. Let (F,E0, (p, w)) be a solution in
AG[s]. We prove that (p, w) ∈ A. Let {xj} := V (F ) ∩ lab−1

G (j) (by assumption s(j) = γ1),
Xi := V (F ) ∩ lab−1

G (i), Ei,j := {vxj : v ∈ Xi}, and FH := (V (F ), E(F ) \ Ei,j). Because
we assume that there are no edges between an i-vertex and a j-vertex in H, we know that
Ei,j∩E(H) = ∅, i.e., FH is an induced forest of H. Let p′ be the partition on s−1

H ({γ1, γ2})∪{v0}
such that (FH , E0, (p

′, w)) is a candidate solution in AH [sH ]. We claim that (FH , E0, sH) is a
solution in AH [sH ]. By the definition of sH , Condition (1) is trivially satisfied. If |Xi| = 1, then
CG(FH , E0, sH) is a subgraph of CG(F,E0, s) and so Condition (2) is satisfied. And if |Xi| ≥ 2
and CG(FH , E0, sH) contains a cycle, then the cycle should contain the vertex v+i ∈ V +

sH
, but

this vertex may be replaced by xj in CG(F,E0, s), contradicting the fact this latter is acyclic.
Condition (3) is also satisfied because sH(i), sH(j) ∈ {γ1, γ2} and for every connected compo-
nent C of CG(FH , E0, sH), either C is a connected component of CG(F,E0, s) or C contains
an ℓ-vertex with ℓ ∈ {i, j}. Therefore, (FH , E0, (p

′, w)) is a solution in AH [sH ].
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It remains to prove that (p, w) is added in A. We claim that acy(p′, {{i, j}}↑L) holds with
L := s−1(γ1, γ2) ∪ {v0}. By definition of acy it is equivalent to prove that i and j cannot be-
long to a same block of p′. Assume towards a contradiction that i and j belong to a same
block of p′. Then, there is a path, in CG(FH , E0, v0), between an i-vertex xi and the j-
vertex xj of F . Let us choose this path P to be the smallest one. One first notices that P
cannot contain the vertex v+i of V +

sH
, if any, because v+i is only adjacent to i-vertices. Be-

cause V (CG(FH , E0, sH)) \ {v+i } = V (CG(F,E0, s)), we would conclude that CG(F,E0, s)
contains a cycle as xixj ∈ E(F ) \ E(FH), contradicting that (F,E0, (p, w)) is a solution in
AG[s]. Therefore, acy(p′, {{i, j}}↑L) holds. By assumption s(j) = γ1, thus j /∈ s−1(γ−2) ∩ {i, j}.
Since i and j are in the same block of the partition p ⊔ {{i, j}}↑L, we conclude that (p, w) ∈
proj(s−1(γ−2) ∩ {i, j}, acjoin({(p′, w)}, {({{i, j}}, 0)})).

Finally, it remains to prove that each weighted partition (p, w) ∈ A belongs to AG[s]. Let
(FH , EH

0 , (p′, w)) be a solution in AH [sH ] so that

(p, w) ∈ proj(s−1(γ−2) ∩ {i, j}, acjoin({(p′, w)}, {({{i, j}}, 0)})).

Let F := G[V (FH)]. By assumption s(j) = γ1, and thus sH(j) = γ1. Let {xj} := V (FH) ∩
lab−1

H (j), Xi := V (FH)∩ lab−1
H (i), and Ei,j := {xjv : v ∈ Xi}. Notice that E(F )\E(FH) = Ei,j .

We claim that (F,EH
0 , (p, w)) is a solution in AG[s].

• First, Condition (1) is trivially satisfied by the definition of sH .

• Secondly, CG(F,EH
0 , s) is a forest. Indeed, {i, j} cannot be a block of p′, otherwise the

acjoin operator would discard p′. If |Xi| = 1, then we have

CG(F,EH
0 , s) = (V (CG(FH , EH

0 , sH)), E(CG(FH , EH
0 , sH)) ∪ Ei,j)

and CG(F,EH
0 , s) is clearly a forest. Otherwise, if |Xi| ≥ 2, then CG(F,EH

0 , s) can be
obtained from CG(FH , EH

0 , sH) by fusing the vertex v+i and the vertex xj . Clearly, this
operation keeps the graph acyclic since xj and v+i are not connected in CG(FH , EH

0 , sH).
Thus (F,EH

0 , (p, w)) satisfies Condition (2).

• Each connected component of CG(FH , EH
0 , sH) is contained in a connected component of

CG(F,EH
0 , s), and the i-vertices are in the same connected component, in CG(F,EH

0 , s),
as xj . Therefore, Condition (3) is satisfied by (F,EH

0 , (p, w)) as s(j) = γ1 and s(ℓ) = sH(ℓ)
for all ℓ ∈ [k] \ {i, j}.

• Also, Condition (4) is satisfied as p is then obtained from p′ by merging the blocks of p′

which contain i and j, and by removing i if s(i) = γ−2.

We can therefore conclude that (F,EH
0 , (p, w)) is a solution in AG[s].

Computing tabG for G = reni→j(H). We can suppose that H is k-labeled. Let s : [k]\{i} →
{γ0, γ1, γ2, γ−2}.

(a) Let A1 := tabH [s1] where s1(i) := γ0 and s1(ℓ) := s(ℓ) for all ℓ ∈ [k] \ {i}. This set
contains all weighted partitions corresponding to solutions not intersecting lab−1

H (i). They
are trivially solutions in AG[s].
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(b) If s(j) = γ0, then let A2 := ∅, otherwise let s2 : [k] → {γ0, γ1, γ2, γ−2} such that s2(j) :=
γ0, s2(i) := s(j) and s2(ℓ) := s(ℓ) for all ℓ ∈ [k] \ {i, j} and let

A2 :=

{
tabH [s2] if s(j) = γ−2,

proj({i}, acjoin(tabH [s2], {({{i, j}}, 0)})) otherwise.

This set contains all weighted partitions corresponding to solutions that intersect lab−1
H (j)

but not lab−1
H (j). They are solutions in AG[s] by replacing i by j with the acjoin operator,

if s(j) ̸= γ−2, in the corresponding weighted partitions. Its worth noticing that if s(j) = γ0,
then s1 = s2 and this is why we set A2 = ∅ in this case.

(c) If s(j) ̸= γ−2, then let A3 := ∅, otherwise let

A3 :=
⋃

s3∈S3

proj({i, j}, tabH [s3]),

where S3 is the set of all the functions s3 with s3(i), s3(j) ∈ {γ1, γ−2}, and s3(ℓ) = s(ℓ) for
all ℓ ∈ [k] \ {i, j}. Intuitively, S3 is the set of functions coherent with s if s(j) = γ−2. The
set A3 corresponds to partial solutions intersecting lab−1

H (i) and lab−1
H (j) when s(j) = γ−2.

In this case, we have to ensure that the partial solutions in A3 respect Condition (3) of
Definition 4.10. We do that by removing all the partitions with a block included in {i, j}.

(d) We now define the last set considering the other cases. If s(j) ̸= γ2, then let A4 := ∅,
otherwise let

A4 :=
⋃

s4∈S4

proj({i}, acjoin(tabH [s4], {({{i, j}}, 0)})),

where S4 is the set of all the functions s4 with s4(i), s4(j) ∈ {γ1, γ2} and s4(ℓ) = s(ℓ) for
all ℓ ∈ [k] \ {i, j}. Informally, S4 is the set of functions compatible with s if s(j) = γ2. The
set A4 corresponds to partial solutions intersecting lab−1

H (i) and lab−1
H (j) when s(j) = γ2.

We have to force that i-vertices and j-vertices belong to different connected components.
We check this with the function acy in the operator acjoin.

We let tabG[s] := reduceacy(rmc(A1 ∪ A2 ∪ A3 ∪ A4)).

Lemma 4.12. Let G = reni→j(H) with H a k-labeled graph. For each function s : [k] \
{i} → {γ0, γ1, γ2, γ−2}, the table tabG[s] ac-represents AG[s] assuming that tabH [s′] ac-represents
AH [s′] for all s′ : [k] → {γ0, γ1, γ2, γ−2}.

Proof. Since the used operators preserve ac-representation, it is enough to prove that AG[s] =
A1 ∪ A2 ∪ A3 ∪ A4 if we assume that tabH [s′] = AH [s′] for every s′ : [k] → {γ0, γ1, γ2, γ−2}.

Let (F,E0, (p, w)) be a solution in AG[s]. We want to prove that (p, w) ∈ A1∪A2∪A3∪A4.
If V (F ) does not intersect lab−1

H (i), then (F,E0, (p, w)) is a solution in AH [s1]. Assume now that
V (F ) intersects lab−1

H (i). If V (F ) ∩ lab−1
H (j) = ∅ and s(j) = γ−2, (F,E0, (p, w)) is a solution in

AH [s2]. If V (F )∩ lab−1
H (j) = ∅ and s(j) ∈ {γ1, γ2}, then it is easy to check that (F,E0, (p

′, w))
is a solution in AH [s2] where p′ is obtained from p by replacing j by i.

We may assume now that V (F ) ∩ lab−1
H (i) ̸= ∅ and V (F ) ∩ lab−1

H (j) ̸= ∅. Then, we have
s(j) ∈ {γ2, γ−2} as |lab−1

G (j) ∩ V (F )| ≥ 2. Let s⋆ : [k] → {γ0, γ1, γ2, γ−2} be the function such
that s⋆(ℓ) := s(ℓ) for all ℓ ∈ [k] \ {i, j}, and for t ∈ {i, j},

s⋆(t) :=

{
γ1 if |V (F ) ∩ lab−1

H (t)| = 1,

s(j) if |V (F ) ∩ lab−1
H (t)| ≥ 2.
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By definition, if s(j) = γ−2, then s⋆ belongs to S3 and if s(j) = γ2, then s⋆ belongs to S4. Let
p′ be the partition on s−1

⋆ ({γ1, γ2}) ∪ {v0} such that (F,E0, (p
′, w)) is a candidate solution in

AH [s⋆]. We claim that (F,E0, (p
′, w)) is a solution in AH [s⋆]. By Definition of s⋆ and of (F,E0),

Condition (1) is satisfied by (F,E0, (p
′, w)).

Suppose first that s(j) = γ−2. Observe that Condition (2) is satisfied because the certificate
graphs of (F,E0) with respect to s and s⋆ are the same. Condition (3) is also satisfied by
definition of s⋆ and because CG(F,E0, s) = CG(F,E0, s⋆). So, (F,E0, (p

′, w)) is a solution in
AH [s⋆].

Assume now that s(j) = γ2. Condition (2) is satisfied. Indeed, if s⋆(i) = γ1, then the
graph CG(F,E0, s) is a subgraph of CG(F,E0, s⋆). Otherwise, if s⋆(i) = γ2, then CG(F,E0, s)
can be obtained from CG(F,E0, s⋆) by fusing v+i with v+j . In both cases, it is easy to see
that CG(F,E0, s⋆) is acyclic as CG(F,E0, s) is acyclic. Condition (3) is satisfied because each
connected component C of CG(F,E0, s) contains at least a vertex in lab−1

G (s−1({γ1, γ2}))∪{v0},
and we have from the definition of s⋆

lab−1
H (s−1

⋆ ({γ1, γ2})) = lab−1
G (s−1({γ1, γ2})).

In both cases, (F,E0, (p
′, w)) is a solution in AH [s⋆], and depending on s(j), we can clearly

conclude that (p, w) is obtained from (p′, w).

Let us now prove that for any weighted partition (p, w) ∈ A1 ∪A2 ∪A3 ∪A4, there is a pair
(F,E0) such that (F,E0, (p, w)) is a solution in AG[s]. This is clear if (p, w) ∈ A1 ∪ A2.

Assume that s(j) = γ−2 and let (p, w) ∈ A3. Let s3 ∈ S3 and (p′, w) be the weighted partition
from tabH [s3] from which (p, w) is obtained. Let (F,E0, (p

′, w)) be a solution in AH [s3]. We
claim that (F,E0, (p, w)) is a solution in AG[s]. By definition of S3, we clearly have |V (F ) ∩
lab−1

H ({i, j})| = |V (F ) ∩ lab−1
G (j)| ≥ 2. We deduce that Condition (1) is satisfied. Condition (2)

is also satisfied because CG(F,E0, s3) is the same as CG(F,E0, s). We claim that Condition
(3) is satisfied. Notice that s−1({γ1, γ2}) = s−1

3 ({γ1, γ2}) \ {i, j}. Moreover, if i ∈ s−1
3 ({γ1, γ2}),

by definition of s3, we have s3(i) = γ1, that is F has exactly one vertex x such that labH(x) = i
(the same statement is true for j). Since we use the operator proj with {i, j}, there are no blocks
of p′ included in {i, j}. Hence, if F contains one vertex x such that labH(x) = i (or labH(x) = j),
then by Condition (4) this vertex is connected in CG(F,E0, s3) to either v0 or to an ℓ-vertex
with ℓ ∈ s−1({γ1, γ2}). We can conclude that each connected component of F must contain a
vertex in lab−1

G (s−1({γ1, γ2})) ∪ {v0}, i.e. Condition (3) is satisfied. Condition (4) is satisfied
owing to the fact that p′ is obtained from p by doing a projection on {i, j}.

Suppose now that s(j) = γ2 and let (p, w) ∈ A4. Let s4 ∈ S4 and (p′, w) be the weighted
partition from tabH [s4] from which (p, w) is obtained, and let (F,E0, (p

′, w)) be a solution in
AH [s4]. By definition of S4, we deduce that Condition (1) is satisfied (see the case s(j) = γ−2).
If there is a cycle in CG(F,E0, s), then it must be between an i-vertex and a j-vertex of H.
But then we must have a path between them in CG(F,E0, s4), i.e., i and j belong to a same
block of p′, contradicting that (p, w) is produced from (p′, w) (because the acjoin operator would
detect that acy(p, {{i, j}}↑[k]) does not hold). So, Condition (2) is satisfied. We deduce that
Condition (3) is satisfied from the fact that by definition of s4, we have lab−1

G (s−1({γ1, γ2})) =
lab−1

H (s−1
4 ({γ1, γ2})). Also, as p is obtained from p′ by merging the blocks containing i and j,

and by removing i, we deduce that Condition (4) is satisfied.
In both cases, we can conclude that (F,E0, (p, w)) is a solution in AG[s].
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Computing tabG for G = Ga ⊕ Gb. We can suppose w.l.o.g. that Ga and Gb are both k-
labeled3. Let s : [k] → {γ0, γ1, γ2, γ−2}.

We say that sa : [k] → {γ0, γ1, γ2, γ−2} and sb : [k] → {γ0, γ1, γ2, γ−2} u-agree on s if,

(u1) for each i ∈ s−1
a (γ0), s(i) = sb(i). Similarly, for each i ∈ s−1

b (γ0), s(i) = sa(i),

(u2) for each i ∈ s−1(γ1), either sa(i) = γ0 or sb(i) = γ0,

(u3) for each i ∈ [k] \ (s−1
a (γ0) ∪ s−1

b (γ0)), if s(i) = γ2, then sa(i), sb(i) ∈ {γ1, γ2},

(u4) for each i ∈ [k] \ (s−1
a (γ0) ∪ s−1

b (γ0)), if s(i) = γ−2, then sa(i), sb(i) ∈ {γ1, γ−2}.

The functions sa and sb inform about the indices to look at tabGa and tabGb
in order to

construct tabG[s]. Let (F,E0, (p, w)) be a solution in AG[s], and assume that it is constructed
from solutions (Fa, E

0
a, (pa, wa)) and (Fb, E

0
b , (pb, wb)), in respectively, AGa [sa] and AGb

[sb]. The
first condition tells that if Fa (resp. Fb) does not intersect lab−1

G (i), then the intersection of F
with lab−1

G (i) depends only on V (Fb) ∩ lab−1
G (i) (resp. V (Fa) ∩ lab−1

G (i)), and so if V (F ) does
not intersect lab−1

G (i), then Fa and Fb do not intersect lab−1
G (i). The second condition tells that

if |F ∩ lab−1
G (i)| = 1, then either F ∩ lab−1

G (i) = Fa ∩ lab−1
G (i) or F ∩ lab−1

G (i) = Fb ∩ lab−1
G (i).

The other two conditions tell when F intersects both lab−1
Ga

(i) and lab−1
Gb

(i). Notice that we may
have s(i) set to γ−2 (or γ2), while Fa and Fb each intersects lab−1

G (i) in exactly one vertex.
We let tabG[s] := reduceacy(rmc(A)) where,

A :=
⋃
sa,sb

u-agree on s

acjoin
(
proj(s−1 (γ−2), tabGa

[sa]) , proj(s
−1 (γ−2), tabGb

[sb])
)
.

The weighted partitions (p, w) added in tabG[s] are all the weighted partitions that are ac-joins
of weighted partitions (pa, wa) and (pb, wb) from tabGa [sa] and tabGb

[sb], respectively. We need
to do the projections before the join because we may have sa(i) = sb(i) = γ1, s(i) = γ−2, and
there is j such that s(j) = γ2 with j in the same block as i in both partitions pa and pb. In this
setting, if we do the projection after the acjoin operator, this latter will detect that acy(pa, pb)
does not hold, and won’t construct (p, w), which indeed corresponds to a solution in AG[s].

Lemma 4.13. Let G = Ga⊕Gb be a k-labeled graph. For each function s : [k] → {γ0, γ1, γ2, γ−2},
the table tabG[s]ac-represents AG[s] assuming that tabGa [s

′] and tabGb
[s′] ac-represent, respec-

tively, AGa [s
′] and AGb

[s′], for each s′ : [k] → {γ0, γ1, γ2, γ−2}.

Proof. Since the used operators preserve ac-representation, it is enough to prove that AG[s] = A
if we consider that tabGt [s

′] = AGt [s
′], for every t ∈ {a, b} and s′ : [k] → {γ0, γ1, γ2, γ−2}.

Let (F,E0, (p, w)) be a solution in AG[s]. We claim that (p, w) ∈ A. For t ∈ {a, b}, let
Ft := Gt[V (F ) ∩ V (Gt)], Et

0 := {v0v ∈ E0 : v ∈ V (Ft)}, and wt := w(V (Ft)), and let
st : [k] → {γ0, γ1, γ2, γ−2} such that

st(i) :=


γ0 if V (Ft) ∩ lab−1

Gt
(i) = ∅,

γ1 if |V (Ft) ∩ lab−1
Gt

(i)| = 1,

s(i) if |V (Ft) ∩ lab−1
Gt

(i)| ≥ 2.

It is straightforward to verify that sa and sb u-agree on s. Observe that, by definition,
s−1
t (γ−2) ⊆ s−1(γ−2) and s−1

t (γ2) ⊆ s−1(γ2), for each t ∈ {a, b}. Let pa and pb be, respec-
tively, partitions on s−1

a ({γ1, γ2}) ∪ {v0} and s−1
b ({γ1, γ2}) ∪ {v0} such that (Fa, E

a
0 , (pa, wa))

and (Fb, E
b
0, (pb, wb)) are, respectively, candidate solutions in AGa [sa] and AGb

[sb].
3If J ⊂ [k] is the set of labels of Ga (or Gb), we can extend the domain of any function s′ : J → {γ0, γ1, γ2, γ−2}

to [k] by setting s′(i) := γ0 for all i ∈ [k] \ J .
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We claim that (Fa, E
a
0 , (pa, wa)) is a solution in AGa [sa]. By definition of pa, sa, and of

(Fa, E
a
0 ), Conditions (1) and (4) are clearly satisfied. Because s−1

a (γ2) ⊆ s−1(γ2), and F =
Fa ⊕ Fb, we can conclude that CG(Fa, E

a
0 , sa) is an induced subgraph of CG(F,E0, s), and

because CG(F,E0, s) is acyclic, we can conclude that CG(Fa, E
a
0 , sa) is acyclic, i.e., Condition

(2) is satisfied. If a connected component C of CG(Fa, E
a
0 , sa) does not intersect s−1

a ({γ1, γ2})∪
{v0}, then C is entirely contained in lab−1

Ga
(s−1

a (γ−2)). But, this yields a contradiction with
(F,E0, (p, w)) satisfying Condition (3) because C is a connected component of CG(F,E0, s),
and s−1

a (γ−2) ⊆ s−1(γ−2). Therefore Condition (3) is also satisfied. We can thus conclude that
(Fa, E

a
0 , (pa, wa)) is a solution in AGa [sa]. Similarly, one can check that (Fb, E

b
0, (pb, wb)) is a

solution in AGb
[sb].

It remains to prove that

(p, w) ∈ acjoin(proj(s−1(γ−2), {(pa, wa)}), proj(s−1(γ−2), {(pb, wb)})).

First, recall that each connected component of F is either a connected component of Fa or of Fb.
Then, because (F,E0, (p, w)) satisfies Condition (3), we have that proj(s−1(γ−2), {(pa, wa)})) ̸=
∅, and similarly proj(s−1(γ−2), {(pb, wb)})) ̸= ∅. We deduce that

(p′a, wa) := (pa↓(s−1(γ−2)), wa) ∈ proj(s−1(γ−2), {(pa, wa)}),
(p′b, wb) := (pb↓(s−1(γ−2)), wb) ∈ proj(s−1(γ−2), {(pb, wb)}).

Let p′′a := p′a↑([k]\s−1({γ0,γ−2})) and p′′b := p′b↑([k]\s−1({γ0,γ−2})). We claim that acy(p′′1, p′′2) holds.
Assume towards a contradiction that it is not the case. We let ∼a (resp. ∼b) be an equivalence
relation on s−1({γ1, γ2}) ∪ {v0} where i ∼a j (resp. i ∼b j) if there is an i-vertex4 and a j-
vertex that are connected in CG(Fa, E

a
0 , sa) (resp. CG(Fb, E

b
0, sb)). By the graphical definition

of acy, we can easily see that if acy(p′′a, p′′b ) does not hold, then there is a sequence i0, . . . , i2r−1 of
s−1({γ1, γ2})∪{v0} such that5, for all 0 ≤ α < r− 1, we have i2α ∼b i2α+1 and i2α+1 ∼a i2α+2.
We can thus construct a cycle in CG(F,E0, s) from this sequence since V (Fa) ∩ V (Fb) = ∅,
CG(Fa, E

a
0 , sa) and CG(Fb, E

b
0, sb) are induced subgraphs of CG(F,E0, s), and all the vertices

labeled with a label from s−1(γ2) are adjacent to v+i in CG(F,E0, s). This yields a contradiction
as CG(F,E0, s) is acyclic by assumption. Therefore, acy(p′′1, p′′2) holds.

Finally, p = p′′a ⊔ p′′b because one easily checks that there is an i-vertex x connected to a
j-vertex y in CG(F,E0, s) if and only if iRj where R is the transitive closure of (i ∼a j or
i ∼b j). This follows from the fact that for every i ∈ s−1({γ1, γ2}), either there is exactly one
i-vertex in F or the i-vertices of F are all adjacent to v+i in CG(F,E0, s). In both cases, the
i-vertices of F are in the same connected component of CG(F,E0, s). Since the equivalence
classes of R correspond to the blocks of p′′1 ⊔ p′′2, and w = wa + wb, we can conclude that
(p, w) ∈ acjoin(proj(s−1(γ−2), {(pa, wa)}), proj(s−1(γ−2), {(pb, wb)})).

We now prove that if (p, w) is added to tabG[s] from (pa, wa) ∈ AGa [sa] and (pb, wb) ∈ AGb
[sb],

then there exists a pair (F,E0) such that (F,E0, (p, w)) is a solution in AG[s]. Let (Fa, E
a
0 ) and

(Fb, E
b
0) such that (Fa, E

a
0 , (pa, wa)) and (Fb, E

b
0, (pb, wb)) are solutions in, respectively, AGa [sa]

and AGb
[sb] with sa and sb u-agreeing on s. We claim that (F,E0, (p, w)) is a solution in AG[s]

with F := (V (F1)∪ V (F2), E(F1)∪E(F2)) and E0 := Ea
0 ∪Eb

0. Because sa and sb u-agree on s,
we clearly have that Condition (1) is satisfied.

Let ∼a and ∼b as defined above. Assume towards a contradiction that there exists a cycle
C in CG(F,E0, s). Since both CG(Fa, E

a
0 , sa) and CG(Fb, E

b
0, sb) are acyclic, C must be a

cycle alternating between paths in CG(Fa, E
a
0 , sa) and paths in CG(Fb, E

b
0, sb). One can easily

4We consider v0 as a v0-vertex.
5The indexes are modulo 2r.

86



check that this implies the existence of a sequence i0, . . . , i2r−1 of s−1({γ1, γ2}) ∪ {v0} such
that5, for all 0 ≤ α < r − 1, we have i2α ∼b i2α+1 and i2α+1 ∼a i2α+2. Moreover, it is easy to
infer, from this sequence and the graphical definition of acy, that acy

(
p′a↑L, p

′
b↑L

)
does not hold

with p′a := pa↓(s−1(γ−2)), p
′
b := pb↓(s−1(γ−2)) and L := s−1({γ1, γ2}), contradicting the fact that

(p, w) = acjoin(proj(s−1(γ−2), {(pa, wa)}), proj(s−1(γ−2), {(pb, wb)})). Therefore, CG(F,E0, s) is
acyclic and so Condition (2) is satisfied.

If we suppose that Condition (3) is not satisfied, then there is a connected component
C of CG(F,E0, s) that does not intersect s−1({γ1, γ2}) ∪ {v0}, i.e., C is fully contained in
lab−1

G (s−1(γ−2)). Since F = Fa ⊎Fb, C is either a connected component of Fa or of Fb. Suppose
w.l.o.g. that C is a connected component of Fa. Observe that C intersects lab−1

Ga
(s−1

a ({γ1, γ2}))
because (Fa, E

a
0 , (pa, wa)) is a solution in AGa [sa]. Moreover, C does not intersect lab−1

Ga
(s−1

a (γ2)),
otherwise C would intersect lab−1

G (s−1(γ2)) since if sa(i) = γ2, then s(i) = γ2, for all i ∈ [k].
Thus C is a connected component of CG(Fa, E

a
0 , sa) and bC := {i ∈ s−1

a (γ1) : C ∩ lab−1
Ga

(i) ̸=
∅} is a block of pa because (Fa, E

a
0 , (pa, wa)) is a candidate solution in AGa [sa]. Thus, by

definition of proj, we have proj(s−1(γ−2), {(pa, wa)}) = ∅, which contradicts the fact that (p, w) =
acjoin(proj(s−1(γ−2), {(pa, wa)}), proj(s−1(γ−2), {(pb, wb)})). So, Condition (3) is also satisfied.
We deduce that Condition (4) is satisfied by observing that, for i, j ∈ s−1({γ1, γ2}) ∪ {v0},
there is an i-vertex connected to a j-vertex in CG(F,E0, s) if and only if iRj where R is the
transitive closure of (i ∼a j or i ∼b j). This concludes the proof that (F,E0, (p, w)) is a solution
in AG[s].

Theorem 4.14. There is an algorithm that, given an n-vertex graph G and an irredundant
k-expression of G, computes a minimum feedback vertex set in time O(15k · 2(ω+1)·k · kO(1) · n).
Proof. We do a bottom-up traversal of the k-expression and at each step we update the tables
as indicated above. The correctness of the algorithm follows from Lemmas 4.11-4.13. From the
definition of AG[s], we conclude that the maximum weight of an induced forest is the maximum,
over all s : [k] → {γ0, γ1, γ2, γ−2} with s−1(γ2) = ∅, of max{w : ({{v0} ∪ s−1(γ1)}}, w) ∈
tabG[s]} because tabG[s] ac-represents AG[s] for all s : [k] → {γ0, γ1, γ2, γ−2}.

Let us discuss the time complexity now. If G = addi,j(H) or G = reni→j(H), and s : [k] →
{γ0, γ1, γ2, γ−2}, then we update tabG[s] from a constant number of tables from tabH , each
identified in constant time from s. Since each table contains at most 2k · (k + 1) entries, we call
the function reduceacy with a set of size at most O(2k · (k + 1)) as input. By Theorem 4.8 and
Proposition 4.4, we can thus update tabG in time 2ω·k ·kO(1). If G = Ga⊕Gb, then we claim that
the tables from tabG are computable in time O(15k ·2(ω+1)·k ·kO(1)). For s : [k] → {γ0, γ1, γ2, γ−2},
we let

A[s] :=
⋃
sa,sb

u-agree on s

acjoin
(
proj(s−1 (γ−2), tabGa

[sa]) , proj(s
−1 (γ−2), tabGb

[sb])
)
.

By Theorem 4.8, computing tabG[s] := reduceacy(rmc(A[s])) can be done in time |A[s]| ·
2(ω−1)·(k+1) · kO(1). Therefore, we can compute the tables from tabG in time∑

s:[k]→{γ0,γ1,γ2,γ−2}

|A[s]| · 2(ω−1)·k · kO(1).

Now, observe that there are at most 15k functions s, sa, sb : [k] → {γ0, γ1, γ2, γ−2} such that
sa and sb u-agree on s. Indeed, for all i ∈ [k], if sa and sb u-agree on s, then the tuple
(sa(i), sb(i), s(i)) can take up to 15 values. See Table 4.1 for all the possible values.

Because each table of tabGa and tabGb
contains at most 2k · (k + 1) values, by Proposition

4.4, we have

|acjoin
(
proj(s−1 (γ−2), tabGa [sa]) , proj(s

−1 (γ−2), tabGb
[sb])

)
| ≤ 22k · k3.
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Table 4.1: Possibles values of s(i) depending on the value of sa(i) and sb(i) when sa and sb
u-agree on s, there are 15 possible values for the tuple (sa(i), sb(i), s(i)).

sb(i) = γ0 sb(i) = γ1 sb(i) = γ2 sb(i) = γ−2

sa(i) = γ0 γ0 γ1 γ2 γ−2

sa(i) = γ1 γ1 γ2, γ−2 γ2 γ−2

sa(i) = γ2 γ2 γ2 γ2 forbidden

sa(i) = γ−2 γ−2 γ−2 forbidden γ−2

It follows that
∑

s:[k]→{γ0,γ1,γ2,γ−2} |A[s]| ≤ 15k · 22k · k3. Hence, we can conclude that the tables
from tabG can be computed in time O(15k · 2(ω+1)·k · kO(1)).

Because the size of a k-expression is O(n · k2), we can conclude that a minimum weighted
feedback vertex set can be computed in the given time.

4.1.3 Connected variants of (σ, ρ)-Dominating Set problems

We will show here how to use the operators defined in [9] in order to obtain a 2O(d·k) · n time
algorithm for computing a minimum or a maximum weighted connected (σ, ρ)-dominating set,
given a k-expression, with d a constant that depends only on (σ, ρ). We deduce from this algo-
rithm a 2O(k) · nO(1) time algorithm for computing a minimum node-weighted Steiner tree, and
a 2O(d·k) · nO(1) time algorithm for computing a maximum (or minimum) weighted connected
co-(σ, ρ)-dominating set.

We let opt ∈ {min,max}, i.e., we are interested in computing a connected (σ, ρ)-dominating
set of maximum (or minimum) weight if opt = max (or opt = min). Let us first give some
definitions. As defined in Section 4.1.1, rmc works only for the case opt = max, we redefine it as
follows in order to take into account minimization problems.

rmc(A) := {(p, w) ∈ A : ∀(p, w′) ∈ A, opt(w,w′) = w}.

Join. Let L′ be a finite set. For A ⊆ Π(L) × N and B ⊆ Π(L′) × N, we define join(A,B) ⊆
Π(L ∪ L′)× N as

join(A,B) := {(p↑L′ ⊔ q↑L, w1 + w2) : (p, w1) ∈ A, (q, w2) ∈ B}.

This operator is the one from [9]. It is used mainly to construct partial solutions of G⊕H from
partial solutions of G and H.

The following proposition could be easily proved. Here also, we assume that log(|A|) ≤ |L|O(1)

for each A ⊆ Π(L)× N (this can be established by applying the operator rmc).

Proposition 4.15. The operator join can be performed in time |A| · |B| · |L ∪ L′|O(1) and the
size of its output is upper-bounded by |A| · |B|.

The following is the same as Definition 4.5, but does not require acyclicity.

Definition 4.16 ([9]). For A ⊆ Π(L)× N, with L a finite set, and q ∈ Π(L), let

opt(A, q) := opt{w : (p, w) ∈ A, p ⊔ q = {L}}.

A set of weighted partitions B ⊆ Π(L) × N represents A if for each q ∈ Π(L), it holds that
opt(A, q) = opt(B, q).
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Let Z and L′ be two finite sets. A function f : 2Π(L)×N × Z → 2Π(L′)×N is said to preserve
representation if for each A,B ⊆ Π(L) × N and z ∈ Z, it holds that f(B, z) represents f(A, z)
whenever B represents A.

Lemma 4.17 ([9]). The operators rmc, proj and join preserve representation.

Theorem 4.18 ([9]). There exists an algorithm reduce that, given a set of weighted partitions
A ⊆ Π(L) × N, outputs in time |A| · 2(ω−1)|L| · |L|O(1) a subset B of A that represents A, and
such that |B| ≤ 2|L|−1.

We use the following function to upper bound the amount of information we need to store in
our dynamic programming tables concerning the (σ, ρ)-domination. For every non-empty finite
or co-finite subset µ ⊆ N, we define d(µ) such as

d(µ) :=

{
0 if µ = N,
1 +min(max(µ),max(N \ µ)) otherwise.

For example, d(N+) = 1 and for every c ∈ N, we have d({0, . . . , c}) = c+ 1.
The definition of d is motivated by the following observation which is due to the fact that,

for all µ ⊆ N, if d(µ) ∈ µ, then µ is co-finite and contains N \ {1, . . . , d(µ)− 1}.

Fact 4.19. Let A ⊆ V (G) and let (σ, ρ) be a pair of finite or co-finite subsets of N. Let
d := max(d(σ), d(ρ)). For all X ⊆ A and Y ⊆ A, X ∪ Y (σ, ρ)-dominates A if and only if
min(d, |N(v) ∩X|+ |N(v) ∩ Y |) belongs to σ (resp. ρ) if v ∈ X (resp. v /∈ X).

Let us describe with a concrete example the information we need concerning the (σ, ρ)-
domination. We say that a set D ⊆ V (G) is a 2-dominating set if every vertex in V (G) has at
least two neighbors in D. It is worth noticing that a 2-dominating set is an (N\{0, 1},N\{0, 1})-
dominating set and d(N \ {0, 1}) = 2. Let H be a k-labeled graph used in an irredundant k-
expression of a graph G. Assuming DH ⊆ V (H) is a subset of a 2-dominating set D of G, we
would like to characterize the sets Y ⊆ V (G) \ V (H) such that DH ∪ Y is a 2-dominating set
of H. One first observes that DH is not necessarily a 2-dominating set of H. Since we want to
2-dominate V (H), we need to know for each vertex x in V (H) how many neighbors it needs in
addition to be 2-dominated . For doing so, we associate DH with a sequence R′ := (r′1, . . . , r

′
k)

over {0, 1, 2}k such that, for each i ∈ [k], every vertex in lab−1
H (i) has at least 2− r′i neighbors in

DH . For example, if r′i = 1, then every i-vertex has at least one neighbor in DH . Notice that DH

can be associated with several such sequences. This sequence is enough to characterize what we
need to 2-dominate V (H) since the vertices with the same label in H have the same neighbors
in the graph (V (G), E(G) \ E(H)) and each vertex needs at most 2 additional neighbors to be
2-dominated.

In order to update the sequence R′ := (r′1, . . . , r
′
k) associated with a set DH , we associate

with DH another sequence R := (r1, . . . , rk) over {0, 1, 2}k such that ri corresponds to the
minimum between 2 and the number of i-vertices in DH , for each i ∈ [k]. This way, when we
apply an operation addi,j on H, we know that every i-vertex has at least 2− r′i+ rj neighbors in
DH in the graph addi,j(H). For example, if rj = 1 and every i-vertex has at least one neighbor
in H that belongs to DH , then we know that every i-vertex is 2-dominated by DH in the graph
addi,j(H).

Let (σ, ρ) be a fixed pair of non-empty finite or co-finite subsets of N. Let’s first show how to
compute an optimum connected (σ, ρ)-dominating set. We consider node-weighted Steiner tree
and connected co-(σ, ρ)-dominating set at the end of the section. Let d := max{d(σ), d(ρ)}.

The following definitions formalize the intuitions we give for 2-dominating set to the (σ, ρ)-
domination.
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Definition 4.20 (Certificate graph of a solution). Let G be a k-labeled graph, and R′ :=
(r′1, . . . , r

′
k) ∈ {0, . . . , d}k. Let V + := {v11, . . . , v1d, v21, . . . , v2d, . . . , vk1 , . . . , vkd} be a set disjoint

from V (G) and of size d · k. Let V +(R′) := V +
1 (R′) ∪ · · · ∪ V +

k (R′) with

V +
i (R′) :=

{
∅ if r′i = 0,

{vi1, . . . , vir′i} otherwise.

The certificate graph of G with respect to R′, denoted by CG(G,R′), is the graph (V (G) ∪
V +(R′), E(G) ∪ E+

1 ∪ · · · ∪ E+
k ) with

E+
i = {{v, vit} : vit ∈ V +

i (R′) ∧ v ∈ lab−1
G (i)}.

It is worth noticing that E+
i is empty if lab−1

G (i) = ∅ or V +
i (R′) = ∅.

Definition 4.21. Let G be a k-labeled graph. For each D ⊆ V (G) and i ∈ [k], let rdi,G(D) :=

min(d, |lab−1
G (i) ∩D|) and let rdG(D) := (rd1,G(D), . . . , rdk,G(D)).

The sequence rdG(D) describes how each label class is intersected by D up to d vertices.
Moreover, notice that |{rdG(D) : D ⊆ V (G)}| ≤ |{0, . . . , d}k| ≤ (d+ 1)k.

The motivation behind these two sequences is that, in order to computing an optimum (σ, ρ)-
dominating set, it is enough to compute, for any k labeled graph H used in an irredundant k-
expression of a graph G and for each R,R′ ∈ {0, . . . , d}k, the optimum weight of a set D ⊆ V (H)
such that

• rH(D) = R,

• D ∪ V +(R′) (σ, ρ)-dominates V (H) in the graph CG(H,R′).

It is worth noticing that the sequences rdH(D) and R′ are similar to the notion of d-neighbor
equivalence introduced in [18].

We can assume w.l.o.g. that d ̸= 0, that is σ ̸= N or ρ ̸= N. Indeed, if σ = ρ = N, then the
problem of finding a minimum (or maximum) weighted (co-)connected (σ, ρ)-dominating set is
trivial. For computing an optimum connected (σ, ρ)-dominating set, we will as in Section 4.1.2
keep partitions of a subset of labels corresponding to the connected components of the sets D
(that are candidates for the (σ, ρ)-domination). As d ̸= 0, we know through rH(D) the label
classes intersected by D. Moreover, we know through R′ = (r′1, . . . , r

′
k) whether the i-vertices

in such a D will have a neighbor in any extension D′ of D into a (σ, ρ)-dominating set. It is
enough to keep the partition of the labels i with ri,H(D) ̸= 0 and r′i ̸= 0 that corresponds to the
equivalence classes of the equivalence relation ∼ on {i ∈ [k] : ri ̸= 0 and r′i ̸= 0} where i ∼ j if
and only if an i-vertex is connected to a j-vertex in CG(G,R′)[D ∪ V +].

We use the following definition to simplify the notations.

Definition 4.22. For R = (r1, . . . , rk), R
′ = (r′1, . . . , r

′
k) ∈ {0, . . . , d}k, we define active(R,R′) =

{i ∈ [k] : ri ̸= 0 and r′i ̸= 0}.

We are now ready to define the sets of weighted partitions whose representative sets we
manipulate in our dynamic programming tables.

Definition 4.23 (Weighted partitions in DG[R,R′]). Let G be a k-labeled graph, and R,R′ ∈
{0, . . . , d}k. The entries of DG[R,R′] are all the weighted partitions (p, w) ∈ Π(active(R,R′))×N
so that there exists a set D ⊆ V (G) such that w(D) = w, and
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1. rdG(D) = R,

2. D ∪ V +(R′) (σ, ρ)-dominates V (G) in CG(G,R′),

3. if active(R,R′) = ∅, then G[D] is connected, otherwise for each connected component C
of G[D], we have C ∩ lab−1

G (active(R,R′)) ̸= ∅,

4. p = active(R,R′)/ ∼ where i ∼ j if and only if an i-vertex is connected to a j-vertex in
CG(G,R′)[D ∪ V +(R′)].

Conditions (1) and (2) guarantee that (p, w) corresponds to a set D that is coherent with R
and R′. Condition (3) guarantees that each partial solution can be extended into a connected
graph. Contrary to Section 4.1.2, the set of labels expected to play a role in the connectivity
(i.e. active(R,R′)) can be empty. In this case, we have to make sure that the weighted partitions
represent connected solutions. It is worth mentioning that G[∅], i.e. the empty graph, is con-
sidered as a connected graph. Observe that for each (p, w) ∈ DG[R,R′], the partition p has the
same meaning as in Section 4.1.2. It is worth noticing that ∼ is an equivalence relation because
if i ∈ active(R,R′), then all the vertices in lab−1

G (i) are connected in CG(G,R′) through the
vertices in V +

i (R′). In fact, the relation ∼ is equivalent to the transitive closure of the relation ≍
where i ≍ j if there exist an i-vertex and a j-vertex in the same connected component of G[D].

In the sequel, we call a pair (D, (p,w(D))) a candidate solution in DG[R,R′] if the partition
p = active(R,R′)/ ∼ where i ∼ j if and only if an i-vertex is connected to a j-vertex in
CG(G,R′)[D ∪ V +(R′)]. If in addition Conditions (1)-(3) are satisfied, we call (D, (p,w(D))) a
solution in DG[R,R′].

It is straightforward to check that the weight of an optimum solution is the optimum over
all R ∈ {0, . . . , d}k of opt{w : (∅, w) ∈ DG[R, {0}k]} for a k-labeled graph G.

Analogously to Section 4.1.2 our dynamic programming algorithm will store a subset of
DG[R,R′] of size 2k−1 that represents DG[R,R′]. Recall that we suppose that any graph is given
with an irredundant k-expression.

Computing tabG for G = 1(x). For (r1) ∈ {0, . . . , d}, (r′1) ∈ {0, . . . , d}, let

tabG[(r1), (r
′
1)] :=


{(∅, 0)} if r1 = 0 and r′1 ∈ ρ,

{({{1}},w(x))} if r1 = 1 and r′1 ∈ σ,
∅ otherwise.

Since there is only one vertex in G labeled 1, DG[(r1), (r
′
1)] is empty whenever r1 /∈ {0, 1}.

Also, the possible solutions are either to put x in the solution (r1 = 1) or to discard it (r1 = 0);
in both cases we should check that x is (σ, ρ)-dominated by V +

1 (R′). We deduce then that
tabG[(r1), (r

′
1)] = DG[(r1), (r

′
1)].

Computing tabG for G = reni→j(H). We can suppose that H is k-labeled and that i = k.
Let R := (r1, . . . , rk−1), R

′ := (r′1, . . . , r
′
k−1) ∈ {0, . . . , d}k−1.

To compute tabG[R,R′], we define S, the set of tuples coherent with respect to R and
Condition (1), as follows

S := {(s1, . . . , sk) ∈ {0, . . . , d}k : rj = min(d, sk + sj) and ∀ℓ ∈ [k] \ {i, j}, sℓ = rℓ}.

It is worth noticing that we always have (r1, . . . , rk−1, 0) ∈ S. Moreover, if rj = 0, then
S = {(r1, . . . , rk−1, 0)}. We define also S′ = (s′1, . . . , s

′
k) ∈ {0, . . . , d}k with s′k = r′j and s′ℓ = r′ℓ
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for all ℓ ∈ [k − 1]. Notice that S′ is the only tuple compatible with R′ and Condition (2) since
for every v ∈ lab−1

G (j), the number of vertices in V +(R′) adjacent to v in CG(G,R′) is the same
as the number of vertices in V +(S′) adjacent to v in CG(H,S′).

(a) If rj = 0 or r′j = 0, then we let

tabG[R,R′] := reduce

(
rmc

(⋃
S∈S

tabH [S, S′]

))
.

In this case, the vertices in lab−1
G (j) are not expected to play a role in terms of connectivity

anymore as either we expect no additional neighbors for them or they are not intersected
by the partial solutions.

(b) Otherwise, we let tabG[R,R′] := reduce(rmc(A)) with

A := proj

(
{k},

⋃
S∈S

join(tabH [S, S′], {({{j, k}}, 0)})

)
.

Intuitively, we put in tabG[R,R′] all the weighted partitions (p, w) which belong to the
tables tabH [S, S′] with S ∈ S, after merging the blocks in p containing k and j, and
removing k from the resulting partition.

Lemma 4.24. Let G = renk→j(H) with H a k-labeled graph. For all R := (r1, . . . , rk−1), R
′ :=

(r′1, . . . , r
′
k−1) ∈ {0, . . . , d}k−1, the table tabG[R,R′] is a representative set of DG[R,R′] assuming

that tabH [S, S′] is a representative set of DH [S, S′] for all S ∈ {0, . . . , d}k.

Proof. Since the used operators preserve representation, it is enough to prove that each weighted
partition added to tabG[R,R′] belongs to DG[R,R′], and that

• in Case (a), we have DG[R,R′] ⊆
⋃

S∈S DH [S, S′], and

• in Case (b), we have DG[R,R′] ⊆ A if we let tabH [S, S′] = DH [S, S′] for every S ∈
{0, . . . , d}k.

Let (D, (p, w)) be a solution in DG[R,R′]. We start by proving that we have (p, w) ∈⋃
S∈S DH [S, S′] if we are in Case (a), or (p, w) ∈ A if we are in Case (b). By the defi-

nition of S, we deduce that rH(D) ∈ S. Indeed, rj,G(D) = min(d, |D ∩ lab−1
G (j)|) equals

min(d, rdj,H(D) + rdk,H(D)) because lab−1
G (j) = lab−1

H ({j, k}).
Let p′ ∈ Π(active(rdH(D), S′)) such that (D, (p′, w)) is a candidate solution in DH [rdH(D), R′].

We claim that (D, (p′, w)) is a solution in DH [rdH(D), R′]. Condition (1) is trivially satisfied. We
deduce from the definition of S′ that Condition (2) is satisfied. We claim that Condition (3)
is satisfied. If R′ = {0}k−1, then we have S′ = {0}k and Condition (3) is satisfied because
H[D] = G[D] must be connected since (D, (p, w)) is a solution in DG[R,R′]. Otherwise, every
connected component C of G[D] = H[D] intersects lab−1

G (active(R,R′)). Let C be a connected
component of H[D]. If C contains a vertex labeled ℓ in G with ℓ ∈ active(R,R′) \ {j}, then
by definition of S′, we have ℓ ∈ active(rdH(D), S′). Suppose now, C contains a vertex v in
lab−1

G (j) and j ∈ active(R,R′). If v is labeled k in H, then rdk,H(D) ̸= 0 and thus k belongs
to active(rdH(D), S′) because s′k = r′j ̸= 0. Symmetrically, if v is labeled j in H, then j ∈
active(rdH(D), S′). In both cases, C intersects lab−1

H (active(rdH(D), S′)). We can conclude that
Condition (3) is satisfied. Hence, (D, (p′, w)) is a solution in DH [rdH(D), R′].
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If rj = 0 or r′j = 0 (Case (a)), then active(S, S′) = active(R,R′). Consequently, it is easy to
see that p = p′ f (3) and thus (p, w) ∈ tabH [S, S′].

Assume now that rj ̸= 0 and r′j ̸= 0 (Case (b)). Let Dk := D ∩ lab−1
H (k) and Dj :=

D ∩ lab−1
H (j). Observe that the graph CG(G,R′)[D ∪ V +(R′)] can be obtained from the graph

CG(H,S′)[D ∪ V +(S′)] by removing the vertices in V +
k (R′) and by adding the edges between

V +
j (R′) and Dk. Hence, p is obtained from p′ by merging the blocks containing j and k, and by

removing k. Thus, we can conclude that (p, w) ∈ A.

It remains to prove that each weighted partition (p, w) added to tabG[R,R′] belongs to
DG[R,R′]. Let (p, w) be a weighted partition added to tabG[R,R′] from (p′, w) ∈ tabH [S, S′],
and let D ⊆ V (H) such that (D, (p′, w)) is a solution in DH [S, S′]. We want to prove that
(D, (p, w)) is a solution in DG[R,R′]. From the definitions of S and S′, we deduce that D
satisfies Conditions (1) and (2). Since active(S, S′) \ {k} = active(R,R′) and G[D] = H[D], we
deduce that D satisfies also Condition (3) that lab−1

G (j) = lab−1
H ({j, k}).

If rj = 0 or r′j = 0, then active(S, S′) = active(R,R′). Consequently, we deduce that p = p′

and that (D, (p, w)) satisfies Condition (4). Otherwise, we deduce from the previous observations
concerning the differences between CG(G,R′)[D ∪ V +(R′)] and CG(H,S′)[D ∪ V +(S′)], that
(D, (p, w)) satisfies Condition (4). In both cases, we can conclude that (D, (p, w)) is a solution
in DG[R,R′].

Computing tabG for G = addi,j(H). We suppose w.l.o.g. that H is k-labeled. Let R :=
(r1, . . . , rk) ∈ {0, . . . , d}k, R′ := (r′1, . . . , r

′
k) ∈ {0, . . . , d}k.

Let S′ := (s′1, . . . , s
′
k) ∈ {0, . . . , d}k such that s′i := min(d, r′i + rj), s′j := min(d, r′j + ri), and

s′ℓ := r′ℓ for all ℓ ∈ [k] \ {i, j}. It is easy to see that S′ is the only tuple compatible with R′ and
Condition (2).

(a) If active(R,R′) = ∅, then we let

tabG[R,R′] := rmc
(
{(∅, w) : (p, w) ∈ tabH [R,S′]}

)
.

In this case, the partial solutions in tabG[R,R′] are associated with connected solutions
by Condition (3). The partial solutions in tabH [R,S′] trivially satisfy this condition in G.
Notice that tabG[R,R′] represents DG[R,R′] because the function f : 2Π(active(R,R′))×N →
2{∅}×N with f(A) := {(∅, w) : (p, w) ∈ A} preserves representation.

(b) If ri = 0 or rj = 0, we let tabG[R,R′] := tabH [R,S′]. We just copy all the solutions
not intersecting lab−1

G (i) or lab−1
G (j). In this case, the connectivity of the solutions is not

affected by the addi,j operation.

(c) Otherwise, we let tabG[R,R′] := rmc(A), where

A := proj({t ∈ {i, j} : r′t = 0}, join(tabH [R,S′], {({{i, j}}, 0)})).

In this last case, we have i, j ∈ active(R,S′). We put in tabG[R,R′], the weighted parti-
tions of tabH [R,S′] after merging the blocks containing i and j, and removing i or j if,
respectively, r′i = 0 and r′j = 0, i.e., if they don’t belong, respectively, to active(R,R′).

It is worth noticing that if |tabH [R,S′]| ≤ 2k−1, then we have |tabG[R,R′]| ≤ 2k−1. Thus, we do
not have to use the function reduce to compute tabG.
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Lemma 4.25. Let G = addi,j(H) be a k-labeled graph such that there are no edges between an
i-vertex and a j-vertex in H. For all tuples R := (r1, . . . , rk), R

′ := (r′1, . . . , r
′
k) ∈ {0, . . . , d}k, the

table tabG[R,R′] is a representative set of DG[R,R′] assuming that tabH [R,S′] is a representative
set of DH [R,S′].

Proof. Since the used operators preserve representation, it is enough to prove that every weighted
partition added to tabG[R,R′] belongs to DG[R,R′], and that

• in Case (a), we have DG[R,R′] ⊆ {(∅, w) : (p, w) ∈ DH [R,S′]},

• in Case (b), we have DG[R,R′] ⊆ DH [R,S′], and

• in Case (c), we have DG[R,R′] ⊆ A if we let tabH [R,S′] = DH [R,S′].

Let (D, (p, w)) be a solution in DG[R,R′]. Let p′ ∈ Π(active(R,S′)) such that (D, (p′, w)) is a
candidate solution in DH [R,S′]. We claim that (D, (p′, w)) is a solution in DH [R,S′]. Condition
(1) is trivially satisfied because labG(v) = labH(v) for all v ∈ V (G). We claim that Condition
(2) is satisfied, that is D ∪ V +(S′) (σ, ρ) dominates V (H) in CG(H,S′). It is quite easy to see
that D ∪ V +(S′) (σ, ρ) dominates V (H) \ lab−1

H ({i, j}). Let v ∈ lab−1
H (i). We claim that v is

(σ, ρ) dominated by D∪V +(S′). Because we assume that there are no edges between an i-vertex
and a j-vertex in H, we have |NG(v) ∩D| = |NH(v) ∩D| + |D ∩ lab−1

G (j)|. Since D ∪ V +(R′)
(σ, ρ)-dominates V (G), if v ∈ D, then |NG(v) ∩ D| + r′i ∈ σ, otherwise, |NG(v) ∩ D| + r′i ∈ ρ.
By Fact 4.19, we conclude that min(d, |NH(v) ∩D|+ |D ∩ lab−1

G (j)|+ r′i) belongs to σ if v ∈ D,
otherwise it belongs to ρ. As min(d, r′i + |D ∩ lab−1

G (j)|) = min(d, r′i + rj) = s′i, we deduce
that D ∪ V +(S′) (σ, ρ) dominates v. Thus, every i-vertex is (σ, ρ)-dominated by D ∪ V +(S′) in
CG(H,S′). Symmetrically, we deduce that every j-vertex is (σ, ρ)-dominated by D ∪ V +(S′) in
CG(H,S′). Hence, Condition (2) is satisfied.

In order to prove that Condition (3) is satisfied, we distinguish the following cases. First,
suppose that active(R,R′) = ∅. By Condition (3), G[D] is connected. As G = addi,j(H), the
graph H[D] is obtained from G[D] by removing all edges between the i-vertices and the j-
vertices. We deduce that either H[D] is connected (if ri = 0 or rj = 0), or that every connected
component of H[D] contains at least one vertex whose label is i or j (otherwise G[D] would not
be connected). In both cases, Condition (3) is satisfied.

Assume now that active(R,R′) ̸= ∅. If ri = 0 (resp. rj = 0), then, by definition of S′, we have
s′j = r′j (resp. s′i = r′i). Therefore, if ri = 0 or rj = 0, then we have active(R,R′) = active(R,S′),
and Condition (3) is trivially satisfied. Otherwise, if ri ̸= 0 and rj ̸= 0, then, by definition of S′,
we have s′i ̸= 0, s′j ̸= 0, and thus i, j ∈ active(R,S′). In this case, we conclude that Condition
(3) is satisfied because, for every connected component C of H[D], either C is a connected
component of G[D], or C contains at least one vertex whose label is i or j.

Hence, (D, (p′, w)) is a solution in DH [R,S′]. If active(R,R′) = ∅, then p = ∅ and (p, w) is
added in tabG[R,R′]. Else if ri = 0 or rj = 0, then p′ = p and (p, w) is also added to tabG[R,R′].
Otherwise, it is easy to see that p is obtained from p′ by merging the blocks of p′ containing
i and j, and by removing them if they belong to {ℓ ∈ [k] : r′ℓ = 0}. Thus, we can conclude
that (p, w) ∈ {(∅, w) : (p, w) ∈ DH [R,S′]}) in Case (a), (p, w) ∈ DH [R,S′] in Case (b), and
(p, w) ∈ A in Case (c).

It remains to prove that every weighted partition added to tabG[R,R′] belongs to DG[R,R′].
Let (p, w) be a weighted partition added to tabG[R,R′] from (p′, w) ∈ tabH [R,S′] and let
D ⊆ V (H) such that (D, (p′, w)) is a solution in DH [R,S′]. We claim that (D, (p, w)) is a
solution in DG[R,R′]. Obviously, Condition (1) is satisfied. We deduce that Condition (2) is
satisfied from the definition of S′ and the previous arguments. We claim that Condition (3) is
satisfied. Suppose first that R′ = {0}k. Then either S′ = {0}k or {i, j} = active(R,S′). Indeed,
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we have active(R,S′) ⊆ {i, j}. Now, i ∈ active(R,S′) if and only if ri ̸= 0 and s′i ̸= 0, and
then, by definition of S′, s′j = ri ̸= 0 and s′i = rj ̸= 0. Thus, i ∈ active(R,S′) if and only
if j ∈ active(R,S′). Therefore, we conclude that either H[D] is connected or every connected
component C of H[D] contains at least a vertex whose label is i or j. As G[D] is obtained from
H[D] by adding all the edges between the i-vertices and the j-vertices, we conclude that, in both
cases, G[D] is connected.

Otherwise, if R′ ̸= {0}k, then every connected component of H[D] contains at least one vertex
whose label is in active(R,S′). If ri = 0 or rj = 0, then we are done because active(R,R′) =
active(R,S′) by definition of S′. Suppose now that ri ̸= 0 and rj ̸= 0. In this case, we have
i, j ∈ active(R,S′) from the definition of S′. Assume towards a contradiction that there exists
a connected component C in G[D] such that C does not intersect lab−1

G (active(R,R′)). Notice
that C intersects lab−1

G (active(R,S′)) because C is a union of connected components of H[D]. As
active(R,S′)\active(R,R′) ⊆ {i, j}, we deduce that C contains at least one vertex whose label is
i or j. Since the i-vertices and the j-vertices of D are in the same connected component of G[D],
we have lab−1

G ({i, j})∩D ⊆ C. Therefore, we conclude that active(R,S′) \ active(R,R′) = {i, j}.
It follows, that all the connected components of H[D] that intersect lab−1

G ({i, j}) do not intersect
lab−1

G (active(R,S′) \ {i, j}) because they are contained in C. We can conclude that {i, j} is a
block of p′′ := p′ ⊔ {{i, j}}↑active(R,S′). Hence, we have proj({t ∈ {i, j} : r′t = 0}, {(p′′, w)}) = ∅
because {t ∈ {i, j} : r′t = 0} = {i, j}. This contradicts the fact that (p, w) is obtained from
(p′, w′). Thus, Condition (3) is satisfied.

We deduce from the previous observations concerning Condition (4) that this condition is
also satisfied. Thus, every solution (p, w) added to tabG[R,R′] belongs to DG[R,R′].

Computing tabG for G = Ga⊕Gb. Assume that G is k-labeled and let R := (r1, . . . , rk), R
′ :=

(r′1, . . . , r
′
k) ∈ {0, . . . , d}k. The following notion characterizes the pairs (A,B) compatible with

R with respect to Condition (1). We say that ((a1, . . . , ak), (b1, . . . , bk)) is R-compatible if and
only if for all i ∈ [k], we have ri = min(d, ai + bi). We can suppose w.l.o.g. that Ga and Gb are
k-labeled6.

(a) If R′ = {0}k, then we let tabG[R,R′] := reduce(rmc(tabGa [R,R′] ∪ tabGb
[R,R′])) if 0 ∈

ρ, otherwise we let tabG[R,R′] = ∅. Condition (3) implies that the partial solutions in
DG[R,R′] are either fully contained in V (Ga) or in V (Gb) since there are no edges between
these vertex sets in G. Moreover, in order to satisfy Condition (2), we must have 0 ∈ ρ.

(b) Otherwise, we let tabG[R,R′] := reduce(rmc(A)) where

A :=
⋃

(A,B) is R-compatible

join(tabGa [A,R
′], tabGb

[B,R′]).

Lemma 4.26. Let G = Ga⊕Gb be a k-labeled graph. For all R = (r1, . . . , rk), R
′ = (r′1, . . . , r

′
k) ∈

{0, . . . , d}k, the table tabG[R,R′] is a representative set of DG[R,R′] assuming that tabGa [A,R
′]

and tabGb
[B,R′] are representative sets of DGa [A,R

′] and DGb
[B,R′], respectively, for all A,B ∈

{0, . . . , d}k.

Proof. Since the used operators preserve representation, it is easy to see that if R′ = {0}k, then
we are done as DG[R,R′] = DGa [R,R′] ∪ DGb

[R,R′] if 0 ∈ ρ, otherwise DG[R,R′] = ∅. Indeed,
by Condition (3), for all solutions (D, (p, w)) in DG[R,R′], the graph G[D] must be connected.

6If, for example, labGa : V (Ga) → [k]\{1} and labGb : V (Gb) → [k], we consider that ((a2, . . . , ak), (b1, . . . , bk))
is R-compatible if b1 = r1 and for all i ∈ [k] \ {1}, we have ri = min(d, ai + bi).
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Since G = Ga ⊕ Gb, there are no edges between V (Ga) and V (Gb) in G[D]. Thus, D is either
included in V (Ga) or in V (Gb). Since V (Ga) ̸= ∅ and V (Gb) ̸= ∅, we have V (G) \ D ̸= ∅.
This implies that 0 ∈ ρ, otherwise the vertices in V (G) \ D will not be (σ, ρ)-dominated by
D ∪ V +(R′) = D in CG(G,R′) as V +(R′) = ∅.

In the following, we assume that R′ ̸= {0}k. Since the used operators preserve representation,
it is enough to prove that DG[R,R′] = A if we let tabGt [S,R

′] = DGt [S,R
′] for all S ∈ {0, . . . , d}k

and t ∈ {a, b}.
Let (D, (p, w)) be a solution in DG[R,R′]. We start by proving that (p, w) ∈ A. Let Da = D∩

V (Ga) and Db = D∩V (Gb). From the definition of R-compatibility, we deduce that rdGa
(Da) and

rdGb
(Db) are R-compatible. Indeed, we have min(d, |lab−1

G (i) ∩D|) = min(d, rdGa
(Da) + rdGb

(Db))
for all i ∈ [k].

Let pa ∈ Π(active(rdGa
(Da), R

′)) such that (Da, (pa,w(Da))) is a candidate solution in the ta-
ble DGa [r

d
Ga

(Da), R
′]. We claim that the pair (Da, (pa,w(Da))) is a solution in DGa [r

d
Ga

(Da), R
′].

Condition (1) is trivially satisfied. By assumption, D ∪ V +(R′) (σ, ρ) dominates V (G) in the
graph CG(G,R′). Since there are no edges between the vertices in V (Ga) and those in V (Gb), we
conclude that Da∪V +(R′) (σ, ρ)-dominates V (Ga) in CG(Ga, R

′). That is Condition (2) is sat-
isfied. Observe that every connected component of G[D] is either included in Da or in Db. There-
fore, every connected component of Ga[Da] contains a vertex v with a label j ∈ active(R,R′).
Since v ∈ Da, we conclude that rdj,Ga

(Da) ̸= 0, thus j ∈ active(rdGa
(Da), R

′). We can conclude
that Condition (3) is satisfied. Thus, (Da, (pa,w(Da))) is a solution in DGa [r

d
Ga

(Da), R
′]. Sym-

metrically, we deduce that there exits pb ∈ active(Rd
Gb
(Db), R

′) such that (Db, (pb,w(Db))) is a
solution in DGb

[rdGb
(Db), R

′].
It remains to prove that p = pa↑L ⊔ pb↑L with L = active(R,R′). First, observe that

active(rdGa
(Da), R

′) ∪ active(rdGb
(Db, R

′)) = active(R,R′) and thus pa↑L ⊔ pb↑L is a partition
of active(R,R′). Let ∼a (resp. ∼b) be the equivalence relation such that i ∼a j (resp. i ∼b

j) if an i-vertex is connected to a j-vertex in the graph CG(Ga, R
′)[Da ∪ V +(R′)] (resp.

CG(Gb, R
′)[Db ∪ V +(R′)]). By Condition (4), two labels i, j are in the same block of p if and

only if an i-vertex and a j-vertex are connected in CG(G,R′)[D ∪ V +(R′)]. On the other hand,
i and j are in the same block of pa↑L ⊔ pb↑L if and only if iRj where R is the transitive closure
of the relation (i ∼a j or i ∼b j). By definition of CG(G,R′), for every label i ∈ active(R,R′),
we have V +

i (R′) ̸= ∅ and the vertices in lab−1
G (i)∩D are all adjacent to the vertices in V +

i (R′).
One can easily deduce from these observations that p = pa↑L ⊔ pb↑L. Hence, (p, w) ∈ A.

We now prove that every weighted partition in A belongs to DG[R,R′]. Let (p, w) be a
weighted partition added to tabG[R,R′] from a solution (Da, (pa, wa)) in DGa [A,R

′] and a solu-
tion (Db, (pb, wb)) in DGb

[B,R′]. We claim that (Da ∪Db, (pa↑L ⊔ pb↑L, wa+wb)) is a solution in
DG[R,R′] with L = active(R,R′). We deduce that Condition (1) is satisfied from the definition
of R-compatibility and because min(d, |lab−1

G (i)∩D|) = min(d, rdGa
(Da)+rdGb

(Db)) for all i ∈ [k].
With the same arguments given previously, one easily deduces that Conditions (2)-(4) are also
satisfied. We conclude that (Da ∪Db, (pa↑L ⊔ pb↑L, wa + wb)) is a solution in DG[R,R′].

Theorem 4.27. There is an algorithm that, given an n-vertex graph G and an irredundant k-
expression of G, computes a maximum (or a minimum) connected (σ, ρ)-dominating set in time
(d+ 1)3k · 2(ω+1)·k · kO(1) · n with d := max(d(σ), d(ρ)).

Proof. We do a bottom-up traversal of the k-expression and at each step we update the tables
as indicated above. The correctness of the algorithm follows from Lemmas 4.24-4.26. From the
definition of DG[R,R′], we deduce that the weight of an optimum connected (σ, ρ)-dominating
set corresponds to the optimum over all R ∈ {0, . . . , d}k of opt{w : (∅, w) ∈ tabG[R, {0}k]}
because tabG[R, {0}k] represents DG[R, {0}k].
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Let us discuss the time complexity now. We claim that the tables of tabG can be computed
in time (d+ 1)3k · 2(ω+1)·k · kO(1). We distinguish the following cases:

• If G = 1(x), then it is easy to see that tabG is computable in time O(d).

• If G = addi,j(H), then we update tabG[R,R′] from one entry tabH [R,S′] for some fixed
S′ computable in constant time. The used join operation runs in time 2k−1 · kO(1) (from
Proposition 4.15). Thus, tabG is computable in time (d+ 1)2k · 2k−1 · kO(1).

• Now, if G = reni→j(H), then we update tabG[R,R′] from at most |S| = (d + 1)2 tables
from tabH , each identified in constant time from (R,R′). Since each table of tabH contains
at most 2k−1 entries, computing the call at the function reduce take (d+ 1)2 · 2ω·k · kO(1).
Thus, we can compute tabG in time (d+ 1)2k+2 · 2ω·k · kO(1).

• If G = Ga ⊕ Gb, then the bottleneck is when R′ ̸= {0}k. Indeed, if R′ = {0}k, then
tabG[R,R′] can be computed in time O(2ω·k) since tabG[R,R′] is computed from two
tables, each containing at most 2k−1 entries. Let R′ ̸= {0}k. By Theorem 4.18, we can
compute the set of tables tabG[R,R′] with R ∈ {0, 1, . . . , d}k} in time

∑
R∈{0,...,d}k

 ∑
(A,B) is

R-compatible

|join(tabGa
[A,R′], tabGb

[B,R′])| · 2(ω−1)·k · kO(1)

 .

Observe that for all A,B ∈ {0, . . . , d}k:

1. There is only one R ∈ {0, . . . , d}k such that (A,B) is R-compatible. This follows from
the definition of R-compatibility. Hence, there are at most (d+ 1)2k tuples (A,B,R)
such that (A,B) is R-compatible.

2. From Proposition 4.15, the size of |join(tabGa [A,R
′], tabGb

[B,R′])| is bounded by
22(k−1) and this set can be computed in time 22(k−1) · kO(1).

Since 22(k−1) ·2(ω−1)·k ≤ 2(ω+1)·k, we conclude from the observations (1)-(2) above that we
can compute the tables tabG[R,R′], for every {0}k ̸= R ∈ {0, 1, . . . , d}k, in time (d+1)2k ·
2(ω+1)·k · kO(1).

Hence, we can update tabG in time (d+ 1)3k · 2(ω+1)·k · kO(1).

Therefore, in the worst case, the tables of tabG takes (d+1)3k ·2(ω+1)·k ·kO(1) time to be computed.
Because the size of a k-expression is O(n · k2), we can conclude that a maximum (or minimum)
weighted (σ, ρ)-dominating set can be computed in the given time.

As a consequence of Theorem 4.27, we have the following corollary.

Corollary 4.28. There is an algorithm that, given an n-vertex graph G, a subset K ⊆ V (G) and
an irredundant k-expression of G, computes a minimum node-weighted Steiner tree for (G,K)
in time 2(ω+4)·k · kO(1) · n.

Proof. We can assume w.l.o.g. that |K| ≥ 2. We can reduce the problem Node-weighted
Steiner Tree to a variant of a (σ, ρ)-Dominating Set problem where σ = N+ and ρ = N.
This variant requires K to be included in the (σ, ρ)-dominating set. We can add this constraint,
by modifying how we compute the table tabG, when G = 1(x) and x ∈ K. For (r1), (r′1) ∈ {0, 1},
we let

tabG[R,R′] :=

{
{({{1}},w(x))} if r1 = 1 and r′1 = 1,

∅ otherwise.
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It is straightforward to check that this modification implements this constraint and our algo-
rithm with this modification computes a minimum node-weighted Steiner tree. The running time
follows from the running time of Theorem 4.27 with d = 1.

More modifications are needed in order to compute a maximum (or minimum) weighted
connected co-(σ, ρ)-dominating set.

Corollary 4.29. There is an algorithm that, given an n-vertex graph G and an irredundant k-
expression of G, computes a maximum (or minimum) weighted co-(σ, ρ)-dominating set in time
(d+ 2)3k · 2(ω+1)·k · kO(1) · n.

Proof. First, we need to modify the definition of the tables DG. Let H be a k-labeled graph,
R,R′ ∈ {0, . . . , d}k, and R,R

′ ∈ {0, 1}k. The entries of DH [R,R′, R,R
′
] are all the weighted

partitions (p, w) ∈ Π(active(R,R
′
))×N such that there exists a set X ⊆ V (G) so that w = w(X)

and

1. rdH(V (H) \X) = R and r1H(X) = R,

2. (V (H) \X) ∪ V +(R′) (σ, ρ)-dominates V (H) in CG(H,R′),

3. if active(R,R
′
) = ∅, then H[X] is connected, otherwise every connected component of

H[X] intersects lab−1
H (active(R,R

′
)),

4. p = active(R,R
′
)/ ∼ where i ∼ j if and only if an i-vertex is connected to a j-vertex in

CG(H,R
′
)[X ∪ V +(R

′
)].

As a solution is a set X such that V (G) \X is a (σ, ρ)-dominating set and G[X] is a connected
graph, we need information about X ∩ V (H) and (V (H) \X). Intuitively, R,R′ are the infor-
mation we need to guarantee the (σ, ρ)-domination, and R,R

′ are the information we need to
guarantee the connectedness. In particular, R specifies which label classes are intersected and
R

′ tells which label classes are expected to have at least one additional neighbor in the future.
These modifications imply in particular to change the notion of R-compatibility. For each

t ∈ {a, b, c}, let Rt = (rt1, . . . , r
t
k) ∈ {0, . . . , d}k, and Rt = (rt1, . . . , r

t
k) ∈ {0, 1}k, we say that

(Ra, Ra, Rb, Rb) is (Rc, Rc)-compatible if for all i ∈ [k], we have rci = min(d, rai + rbi ) and rci =
min(1, rai + rbi).

It is now an exercise to modify the algorithm of Theorem 4.27 in order to update the
tables tabH through the different clique-width operations. The weight of an optimum solu-
tion corresponds to the optimum over all R ∈ {0, . . . , d}k, R ∈ {0, 1}k of opt{w : (∅, w) ∈
tabG[R, {0}k, R, {0}k]}, since tabG[R, {0}k, R, {0}k] represents DG[R, {0}k, R, {0}k].

Let us discuss the time complexity now. Let H be a k-labeled graph that is used in the
k-expression of G. First, observe that we do not need to compute tabH [R,R′, R,R

′
] for all

R,R′ ∈ {0, . . . , d}k, and R,R
′ ∈ {0, 1}k. Indeed, for all X ⊆ V (H) and i ∈ [k], if we have

rdi,H(V (H) \X) < d, then

r1i,H(X) =

{
0 if |lab−1

H (i)| = rdi,H(V (H) \X),

1 otherwise.

Hence, we deduce that there are at most (d+ 2)k pairs (R,R) ∈ {0, . . . , d}k × {0, 1}k such that
R = rdH(V (H)\X) and R = r1H(X) for some X ⊆ V (H). Indeed, whenever rdi,H(V (H)\X) < d,
there is only one possible value for r1i,H(X), and when rdi,H(V (H) \X) = d, there are at most 2
possible values for r1i,H(X). With the same arguments used to prove the running time of Theorem
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4.27, one easily deduces that there are at most (d+2)2k tuples (Ra, Ra, Rb, Rb, Rc, Rc) such that
(Ra, Ra, Rb, Rb) is (Rc, Rc)-compatible.

Moreover, it is sufficient to consider (d+ 2)k pairs (R′, R
′
) ∈ {0, . . . , d}k × {0, 1}k when we

update tabH . For every i ∈ [k], we let ciH := |NG(lab
−1
H (i))\NH(lab−1

H (i))|. Notice that for every
vertex v ∈ lab−1

H (i), we have |NG(v)| = |NH(v)| + ciH . Informally, we cannot expect more than
ciH neighbors in the future for the i-vertices of H. Hence, it is enough to consider the pairs
(R′, R

′
) ∈ {0, . . . , d}k × {0, 1}k, with R′ = (r′1, . . . , r

′
k) and R

′
= (r′1, . . . , r

′
k), such that for all

i ∈ [k], if r′i < d, then

r′i =

{
0 if r′i ≥ cHi ,

1 otherwise.

That is, for every i ∈ [k], if r′i < d, then there is one possible value for r′i because if we expect
r′i < d neighbors for the i-vertices in V (H) \X, then we must expect min(0, ciH − r′i) neighbors
for the i-vertices in X. If r′i = d, then there are no restrictions on the value of r′i. Thus, the
pairs (r′i, r

′
i) can take up to (d + 2) values. We conclude that there are at most (d + 2)k pairs

(R′, R
′
) ∈ {0, . . . , d}k ×{0, 1}k worth to looking at. With these observations and the arguments

used in the running time proof of Theorem 4.27, we conclude that we can compute a maximum
(or minimum) weighted co-(σ, ρ)-dominating set in the given time.

4.2 The d-neighbor equivalence versus acyclicity and connectiv-
ity constraints

In this section, we design a framework based on the 1-neighbor equivalence (see Definition 1.1)
and using some ideas of the rank-based approach of [9] to design efficient algorithms for many
problems involving a connectivity constraint. This framework provides tools to reduce the size
of the set of partial solutions we compute at each step of a dynamic programming algorithm.
We prove that many ad-hoc algorithms for these problems can be unified into a single algorithm
that is almost the same as the one from [18] computing a dominating set.

In Subsection 4.2.3, we use our framework to design an algorithm that, given a rooted
layout L, solves any Connected (σ, ρ)-Dominating Set problem. This includes some well-
known problems such as Connected Dominating Set, Connected Vertex Cover or
Node Weighted Steiner Tree. The running time of our algorithm is polynomial in n and
s-necd(L), with d a constant that depends on σ and ρ. Consequently, each Connected (σ, ρ)-
Dominating Set problem admits algorithms with the running times given in Table 4.2.

Table 4.2: Running times of our algorithms for the different parameters, where n is the number
of vertices of the given graph.

Clique-width Rank-width Q-rank-width Mim-width

2O(k) · nO(1) 2O(k2) · nO(1) 2O(k log(k)) · nO(1) nO(k)

In Subsection 4.2.4, we introduce some new concepts to deal with acyclicity. We use these
concepts to deal with the AC-(σ, ρ)-Dominating Set problems. Both Maximum Induced
Tree and Longest Induced Path are the AC variants of (σ, ρ)-Dominating Set problems.
We prove that there exist algorithms that solve these AC variants in the running times given
in Table 4.2. To obtain these results, we rely heavily on the d-neighbor equivalence. However,
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we were not able to provide an algorithm whose running time is polynomial in n and s-necd(L)
for some constant d. Instead, we provide an algorithm whose behavior depends slightly on each
width measure considered in Table 4.2.

We moreover prove that we can modify slightly this algorithm to solve any Acyclic (σ, ρ)-
Dominating Set problem. In particular, this shows that we can use the algorithm for Maxi-
mum Induced Tree to solve the Feedback Vertex Set problem.

Our approach

Let us explain our approach with the connected and AC variants of the Dominating Set
problem. To solve these problems, our algorithms do a bottom-up traversal of a given layout L
of the input graph G and at each step we compute a set of partial solutions. In our case, the steps
of our algorithms are associated with the vertex bipartitions (A,A) induced by the edges of a
layout and the partial solutions are subsets of A. At each step, our algorithms compute, for each
pair (R,R′) where R (resp. R′) is a 1-neighbor equivalence class of A (resp. A), a set of partial
solutions AR,R′ ⊆ R. The way we compute these sets guarantees that the partial solutions in
AR,R′ will be completed with sets in R′. Consequently, we have information about how we will
complete our partial solutions since every Y ∈ R′ has the same neighborhood in A.

To deal with the local constraint of these problems, namely the domination constraint, we
use the ideas of Bui-Xuan et al. [18]. For each pair (R,R′), let us say that X ⊆ A is coherent
with (R,R′) if: (1) X ∈ R and (2) X ∪ Y dominates A in the graph G for every Y ∈ R′. To
compute a minimum dominating set, Bui-Xuan et al. proved that it is enough to keep, for each
pair (R,R′), a partial solution X of minimum weight that is coherent with (R,R′). Intuitively,
if a partial solution X that is coherent with (R,R′) could be completed into a dominating set
of G, then it is the case for every partial solution coherent with (R,R′). This is due to the fact
that any pair of sets in R (resp. R′) dominate the same vertices in A (resp. A).

To solve the connectivity variant, we compute, for each (R,R′), a set AR,R′ of partial solutions
coherent with (R,R′). Informally, AR,R′ has to be as small as possible, but if a partial solution
coherent with (R,R′) leads to a minimum connected dominating set, then AR,R′ must contain
such a partial solution. To deal with this intuition, we introduce the relation of R′-representativity
between sets of partial solutions. We say that A⋆ R′-represents a set A, if, for all sets Y ∈ R′,
we have best(A, Y ) = best(A⋆, Y ) where best(B, Y ) is the minimum weight of a set X ∈ B such
that G[X ∪ Y ] is connected. The main tool of our framework is a function reduce that, given
a set of partial solutions A and a 1-neighbor equivalence class R′ of A, outputs a subset of A
that R′-represents A and whose size is upper bounded by s-nec1(L)2. To design this function,
we use ideas from the rank-based approach of [9]. That is, we define a small matrix C with
|A| rows and s-nec1(L)2 columns. Then, we show that a basis of maximum weight of the row
space of C corresponds to an R′-representative set of A. Since A has s-nec1(L)2 columns, the
size of a basis of A is smaller than s-nec1(L)2. By calling reduce after each computational step,
we keep the sizes of the sets of partial solutions polynomial in s-nec1(L). Besides, the definition
of R′-representativity guarantees that the set of partial solutions computed for the root of L
contains a minimum connected dominating set.

For the AC variant of dominating set, we need more information in order to deal with the
acyclicity. We obtain this extra information by considering that R (resp. R′) is a 2-neighbor
equivalence class over A (resp. A). This way, for all sets X ⊆ A, the vertices in X that have
at least 2 neighbors in R′, have at least 2 neighbors in Y , for all Y ∈ R′. These vertices play
a major role in the acyclicity constraint because they may create cycles when X is joined with
a partial solution Y in A; and thus they are important in our algorithm. We need also a new
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notion of representativity. We say that A⋆ R′-ac-represents a set A, if, for all sets Y ∈ R′, we
have bestacy(A, Y ) = bestacy(A⋆, Y ) where bestacy(B, Y ) is the minimum weight of a set X ∈ B
such that G[X ∪ Y ] is a tree. As for the R′-representativity, we provide a function that, given a
set of partial solutions A and a 2-neighbor equivalence class R′ of A, outputs a small subset A⋆

of A that R′-ac-represents A. Unfortunately, we were not able to upper bound the size of A⋆ by
a polynomial in n and s-necd(L) (for some constant d). Instead, we prove that, for clique-width,
rank-width, Q-rank-width, and mim-width, the size of A⋆ can be upper bounded by, respectively,
2O(k) · n, 2O(k2) · n, 2O(k log(k)) · n, and nO(k). The key to compute A⋆ is to decompose A into a
small number of sets A1 . . . ,Aℓ, said R′-consistent, where the notion of R′-ac-representativity
matches the notion of R′-representativity. More precisely, any R′-representative set of an R′-
consistent set A is also an R′-ac-representative set of A. To compute an R′-ac-representative
set of A it is then enough to compute an R′-representative set for each R′-consistent set in the
decomposition of A. The union of these R′-representative sets is an R′-ac-representative set of
A. Besides the notion of representativity, the algorithm for the AC variant of Dominating Set
is very similar to the one for finding a minimum connected dominating set.

As explained for clique-width in Section 4.1, we can not use the same trick as in [9] to ensure
the acyclicity, that is counting the number of edges induced by the partial solutions. Indeed,
we would need to differentiate at least nk partial solutions (for any parameter k considered in
Table 4.2) in order to update this information. We give more explanation on this statement at
the beginning of Subsection 4.2.4.

4.2.1 Preliminaries

A consistent cut of X is an ordered bipartition (X1, X2) of X such that N(X1) ∩X2 = ∅. We
denote by cuts(X) the set of all consistent cuts of X. In our proofs, we use the following facts.

Fact 4.30. Let X ⊆ V (G). For every C ∈ cc(G[X]) and every (X1, X2) ∈ cuts(X), we have
either C ⊆ X1 or C ⊆ X2.

We deduce from the above fact that |cuts(X)| = 2|cc(G[X])|.

Fact 4.31. Let X and Y be two disjoint subsets of V (G). We have (W1,W2) ∈ cuts(X ∪ Y ) if
and only if the following conditions are satisfied

1. (W1 ∩X,W2 ∩X) ∈ cuts(X),

2. (W1 ∩ Y,W2 ∩ Y ) ∈ cuts(Y ), and

3. N(W1 ∩X) ∩ (W2 ∩ Y ) = ∅ and N(W2 ∩X) ∩ (W1 ∩ Y ) = ∅.

We refer to Section 1.3 for a definition of the d-neighbor equivalence relation. The following
fact follows directly from the definition of the d-neighbor equivalence relation. We use it several
times in our proofs.

Fact 4.32. Let A,B ⊆ V (G) such that A ⊆ B, and let d ∈ N+. For all X,Y ⊆ A, if X ≡d
A Y ,

then X ≡d
B Y .

In order to manipulate the equivalence classes of ≡d
A, one needs to compute a representative

for each equivalence class in polynomial time. This is achieved with the following notion of a
representative. Let G be a graph with an arbitrary ordering of V (G) and let A ⊆ V (G). For
each X ⊆ A, let us denote by repdA(X) the lexicographically smallest set R ⊆ A such that |R| is
minimized and R ≡d

A X. Moreover, we denote by Rd
A the set {repdA(X) : X ⊆ A}. It is worth

noticing that the empty set always belongs to Rd
A, for all A ⊆ V (G) and d ∈ N+. Moreover, we

have Rd
V (G) = Rd

∅ = {∅} for all d ∈ N+. In order to compute Rd
A, we use the following lemma.
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Lemma 4.33 ([18]). For every A ⊆ V (G) and d ∈ N+, one can compute in time O(necd(A) ·
log(necd(A)) · |V (G)|2), the sets Rd

A and a data structure, that given a set X ⊆ A, computes
repdA(X) in time O(log(necd(A)) · |A| · |V (G)|).

In the following, we fix G an n-vertex graph, (T, δ) a rooted layout of G, and w : V (G) → Q
a weight function over the vertices of G. We also assume that V (G) is ordered.

4.2.2 Representative sets

In this section, we define a notion of representativity between sets of partial solutions w.r.t. the
connectivity. Our notion of representativity is defined w.r.t. some node x of T and the 1-neighbor
equivalence class of some set R′ ⊆ Vx. In our algorithms, R′ will always belong to Rd

Vx
for some

d ∈ N+. Our algorithms compute a set of partial solutions for each R′ ∈ Rd
Vx

. The partial
solutions computed for R′ will be completed with sets equivalent to R′ w.r.t. ≡d

Vx
. Intuitively,

the R′’s represent some expectation about how we will complete our sets of partial solutions.
For the connectivity and the domination, d = 1 is enough but if we need more information for
some reasons (for example the (σ, ρ)-domination or the acyclicity), we may take d > 1. This is
not a problem as the d-neighbor equivalence class of R′ is included in the 1-neighbor equivalence
class of R′. Hence, in this section, we fix a node x of T and a set R′ ⊆ Vx to avoid to overload
the statements by the sentence “let x be a node of T and R′ ⊆ Vx”. We let opt ∈ {min,max}; if
we want to solve a maximization (or minimization) problem, we use opt = max (or opt = min).
We use it also, as here, in the next sections.

Definition 4.34 ((x,R′)-representativity). For every A ⊆ 2V (G) and Y ⊆ V (G), we define

best(A, Y ) := opt{w(X) : X ∈ A and G[X ∪ Y ] is connected }.

Let A,B ⊆ 2Vx . We say that B (x,R′)-represents A if, for every Y ⊆ Vx such that Y ≡1
Vx

R′, we
have best(A, Y ) = best(B, Y ).

Notice that the (x,R′)-representativity is an equivalence relation. The set A is meant to
represent a set of partial solutions of G[Vx] which have been computed. We expect to complete
these partial solutions with partial solutions of G[Vx] which are equivalent to R′ w.r.t. ≡1

Vx
. If

B (x,R′)-represents A, then we can safely substitute B to A because the quality of the output
of the dynamic programming algorithm will remain the same. Indeed, for every subset Y of Vx

such that Y ≡1
Vx

R′, the optimum solutions obtained by the union of a partial solution in A and
Y will have the same weight as the optimum solution obtained from the union of a set in B and
Y .

The following theorem presents the main tool of our framework: a function reduce that,
given a set of partial solutions A, outputs a subset of A that (x,R′)-represents A and whose
size is upper bounded by s-nec1(L)2. To design this function, we use ideas from the rank-based
approach of [9]. That is, we define a small matrix C with |A| rows and s-nec1(Vx)

2 columns.
Then, we show that a basis of maximum weight of the row space of C corresponds to an (x,R′)-
representative set of A. Since A has s-nec1(L)2 columns, the size of a basis of A is smaller than
s-nec1(L)2.

In order to compute a small (x,R′)-representative set of a set A ⊆ 2Vx , the following theorem
requires that the sets in A are pairwise equivalent w.r.t. ≡1

Vx
. This is useful since in our algorithm

we classify our sets of partial solutions with respect to this property. We need this to guarantee
that the partial solutions computed for R′ will be completed with sets equivalent to R′ w.r.t.
≡d

Vx
. However, if one wants to compute a small (x,R′)-representative set of a set A that does
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not respect this property, then it is enough to compute an (x,R′)-representative set for each
1-neighbor equivalence class of A. The union of these (x,R′)-representative sets is an (x,R′)-
representative set of A.

Theorem 4.35. Let R ∈ R1
Vx

. Then, there exists an algorithm reduce that, given A ⊆ 2Vx such
that X ≡1

Vx
R for all X ∈ A, outputs in time O(|A| · nec1(Vx)

2(ω−1) · n2) a subset B ⊆ A such
that B (x,R′)-represents A and |B| ≤ nec1(Vx)

2.

Proof. We assume w.l.o.g. that opt = max, the proof is symmetric for opt = min. First, we sup-
pose that R′ ≡1

Vx
∅. Observe that, for every Y ≡1

Vx
∅, we have N(Y )∩ Vx = N(∅)∩ Vx = ∅. It

follows that, for every Y ⊆ Vx such that Y ≡1
Vx

∅ and Y ̸= ∅, we have best(A, Y ) = −∞. More-
over, by definition of best, we have best(A,∅) = max{w(X) : X ∈ A and G[X] is connected}.
Hence, if R′ ≡1

Vx
∅, then it is sufficient to return B = {X}, where X is an element of A of

maximum weight that induces a connected graph.

Assume from now that R′ is not equivalent to ∅ w.r.t. ≡1
Vx

. Let X ∈ A. If there exists
C ∈ cc(G[X]) such that N(C) ∩ R′ = ∅, then, for all Y ≡1

Vx
R′, we have N(C) ∩ Y = ∅.

Moreover, as R′ is not equivalent to ∅ w.r.t. ≡1
Vx

, we have Y ̸= ∅. Consequently, for every
Y ≡1

Vx
R′, the graph G[X∪Y ] is not connected. We can conclude that A\{X} (x,R′) represents

A. Thus, we can safely remove from A all such sets, and this can be done in time |A| · n2. From
now on, we may assume that, for all X ∈ A and for all C ∈ cc(G[X]), we have N(C)∩R′ ̸= ∅. It
is worth noticing that if R = ∅ or more generally N(R) ∩R′ = ∅, then by assumption, A = ∅.

Indeed, if N(R)∩R′ = ∅, then, for every X ∈ A, we have N(X)∩R′ = N(R)∩R′ = ∅ and
in particular, for every C ∈ cc(G[X]), we have N(C) ∩ R′ = ∅ (and we have assumed that no
such set exists in A).

Symmetrically, if, for some Y ⊆ Vx there exists C ∈ cc(G[Y ]) such that N(C)∩R = ∅, then,
for every X ∈ A, the graph G[X ∪ Y ] is not connected. Let D be the set of all subsets Y of Vx

such that Y ≡1
Vx

R′ and, for all C ∈ cc(G[Y ]), we have N(C) ∩ R ̸= ∅. Notice that the sets in

2Vx \ D do not matter for the (x,R′)-representativity.
For every Y ∈ D, we let vY be one fixed vertex of Y . In the following, we denote by R the set

{(R′
1, R

′
2) ∈ R1

Vx
×R1

Vx
}. Let M, C, and C be, respectively, an (A,D)-matrix, an (A,R)-matrix,

and an (R,D)-matrix such that

M[X,Y ] :=

{
1 if G[X ∪ Y ] is connected,
0 otherwise.

C[X, (R′
1, R

′
2)] :=

{
1 if ∃(X1, X2) ∈ cuts(X) such that N(X1) ∩R′

2 = ∅ and N(X2) ∩R′
1 = ∅,

0 otherwise.

C[(R′
1, R

′
2), Y ] :=

{
1 if ∃(Y1, Y2) ∈ cuts(Y ) such that vY ∈ Y1, Y1 ≡1

Vx
R′

1, and Y2 ≡1
Vx

R′
2,

0 otherwise.

Intuitively, M contains all the information we need. Indeed, it is easy to see that a basis of
maximum weight of the row space of M in GF (2) is an (x,R′)-representative set of A. But, M
is too big to be computable efficiently. Instead, we prove that a basis of maximum weight of the
row space of C is an (x,R′)-representative set of A. This follows from the fact that (C · C)[X,Y ]
equals the number of consistent cuts (W1,W2) in cuts(X ∪ Y ) such that vY ∈ W1. That is
(C · C)[X,Y ] = 2|cc(G[X∪Y ])|−1. Consequently, M =2 C · C, where =2 denotes the equality in
GF (2), i.e., (C · C)[X,Y ] is odd if and only if G[X ∪ Y ] is connected. We deduce the running
time of reduce and the size of reduce(A) from the size of C (i.e. |A| · nec1(Vx)

2) and the fact that
C is easy to compute.
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We start by proving that M =2 C ·C. Let X ∈ A and Y ∈ D. We want to prove the following
equality

(C · C)[X,Y ] =
∑

(R′
1,R

′
2)∈R

C[X, (R′
1, R

′
2)] · C[(R′

1, R
′
2), Y ] = 2|cc(G[X∪Y ])|−1.

We prove this equality with the following two claims.

Claim 4.35.1. We have C[X, (R′
1, R

′
2)] ·C[(R′

1, R
′
2), Y ] = 1 if and only if there exists (W1,W2) ∈

cuts(X ∪ Y ) such that vY ∈ W1, W1 ∩ Y ≡1
Vx

R′
1 and W2 ∩ Y ≡1

Vx
R′

2.

Proof. By definition, we have C[X, (R′
1, R

′
2)] · C[(R′

1, R
′
2), Y ] = 1, if and only if

(a) ∃(Y1, Y2) ∈ cuts(Y ) such that vY ∈ Y1, Y1 ≡1
Vx

R′
1, Y2 ≡1

Vx
R′

2, and

(b) ∃(X1, X2) ∈ cuts(X) such that N(X1) ∩R′
2 = ∅ and N(X2) ∩R′

1 = ∅.

Let (Y1, Y2) ∈ cuts(Y ) and (X1, X2) ∈ cuts(X) that satisfy, respectively, Properties (a) and
(b). By definition of ≡1

Vx
, we have N(X1) ∩ Y2 = ∅ because N(X1) ∩ R′

2 = ∅ and Y2 ≡1
Vx

R′
2.

Symmetrically, we have N(X2) ∩ Y1 = ∅. By Fact 4.31, we deduce that (X1 ∪ Y1, X2 ∪ Y2) ∈
cuts(X ∪ Y ). This proves the claim.

Claim 4.35.2. Let (W1,W2) and (W ′
1,W

′
2) ∈ cuts(X ∪ Y ). We have W1 ∩ Y ≡1

Vx
W ′

1 ∩ Y and
W2 ∩ Y ≡1

Vx
W ′

2 ∩ Y if and only if W1 = W ′
1 and W2 = W ′

2.

Proof. We start by an observation about the connected components of X ∪ Y . As Y ∈ D, for
all C ∈ cc(G[Y ]), we have N(C) ∩ R ̸= ∅. Moreover, by assumption, for all C ∈ cc(G[X]), we
have N(C) ∩ R′ ̸= ∅. Since X ≡1

Vx
R and Y ≡1

Vx
R′, every connected component of G[X ∪ Y ]

contains at least one vertex of X and one vertex of Y .
Suppose that W1 ∩Y ≡1

Vx
W ′

1 ∩Y and W2 ∩Y ≡1
Vx

W ′
2 ∩Y . Assume towards a contradiction

that W1 ̸= W ′
1 and W2 ̸= W ′

2. Since W1 ̸= W ′
1, by Fact 4.30, we deduce that there exists

C ∈ cc(G[X ∪ Y ]) such that either (1) C ⊆ W1 and C ⊆ W ′
2 or (2) C ⊆ W ′

1 and C ⊆ W2.
We can assume w.l.o.g. that there exits C ∈ cc(G[X ∪ Y ]) such that C ⊆ W1 and C ⊆ W ′

2.
From the above observation, C contains at least one vertex of X and one of Y , and we have
N(C ∩ X) ∩ (W1 ∩ Y ) ̸= ∅ and N(C ∩ X) ∩ (W ′

2 ∩ Y ) ̸= ∅. But, since W2 ∩ Y ≡1
Vx

W ′
2 ∩ Y ,

we have N(C ∩X) ∩ (W2 ∩ Y ) ̸= ∅. This implies in particular that N(W1) ∩W2 ̸= ∅. It is a
contradiction with the fact that (W1,W2) ∈ cuts(X ∪ Y ).

Notice that Claim 4.35.2 implies that, for every (R′
1, R

′
2) ∈ R, there exists at most one

consistent cut (W1,W2) ∈ cuts(X ∪Y ) such that vY ∈ W1, W1∩Y ≡1
Vx

R′
1, and W2∩Y ≡1

Vx
R′

2.
We can thus conclude from these two claims that

(C · C)[X,Y ] = |{(W1,W2) ∈ cuts(X ∪ Y ) : vY ∈ W1}|.

By Fact 4.30, we deduce that (C · C)[X,Y ] = 2|cc(G[X∪Y ])|−1 since every connected component of
G[X ∪ Y ] can be in both sides of a consistent cut at the exception of the connected component
containing vY . Hence, (C · C)[X,Y ] is odd if and only if |cc(G[X ∪ Y ])| = 1. We conclude that
M =2 C · C.

Let B ⊆ A be a basis of maximum weight of the row space of C over GF (2). We claim that
B (x,R′)-represents A.

Let Y ⊆ Vx such that Y ≡1
Vx

R′. Observe that, by definition of D, if Y /∈ D, then best(A, Y ) =

best(B, Y ) = −∞. Thus it is sufficient to prove that, for every Y ∈ D, we have best(A, Y ) =
best(B, Y ).
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Let X ∈ A and Y ∈ D. Recall that we have proved that M [X,Y ] =2 (C · C)[X,Y ]. Since B
is a basis of C, there exists B′ ⊆ B such that, for each (R′

1, R
′
2) ∈ R, we have C[X, (R′

1, R
′
2)] =2∑

W∈B′ C[W, (R′
1, R

′
2)]. Thus, we have the following equality

M[X,Y ] =2

∑
(R′

1,R
′
2)∈R

C[X, (R′
1, R

′
2)] · C[(R′

1, R
′
2), Y ]

=2

∑
(R′

1,R
′
2)∈R

( ∑
W∈B′

C[W, (R′
1, R

′
2)]

)
· C[(R′

1, R
′
2), Y ]

=2

∑
W∈B′

 ∑
(R′

1,R
′
2)∈R

C[W, (R′
1, R

′
2)] · C[(R′

1, R
′
2), Y ]


=2

∑
W∈B′

(C · C)[W,Y ] =2

∑
W∈B′

M[W,Y ].

If M[X,Y ] = 1 (i.e. G[X ∪ Y ] is connected), then there is an odd number of sets W in B′

such that M[W,Y ] = 1 (i.e. G[W ∪ Y ] is connected). Hence, there exists at least one W ∈ B′

such that G[W ∪ Y ] is connected. Let W ∈ B′ such that M[W,Y ] = 1 and w(W ) is maximum.
Assume towards a contradiction that w(W ) < w(X). Notice that (B\{W})∪{X} is also a basis
of C since the set of independent row sets of a matrix forms a matroid. Since w(W ) < w(X), the
weight of the basis (B \ {W}) ∪ {X} is strictly greater than the weight of the basis B, yielding
a contradiction. Thus w(X) ≤ w(W ). Hence, for all Y ∈ D and all X ∈ A, if G[X ∪ Y ] is
connected, then there exists W ∈ B such that G[W ∪ Y ] is connected and w(X) ≤ w(W ). This
is sufficient to prove that B (x,R′)-represents A. Since B is a basis, the size of B is at most the
number of columns of C, thus, |B| ≤ nec1(Vx)

2.
It remains to prove the running time. We claim that C is easy to compute.
By Fact 4.30, C[X, (R′

1, R
′
2)] = 1 if and only if, for each C ∈ cc(G[X]), we have either

N(C)∩R′
1 = ∅ or N(C)∩R′

2 = ∅. Thus, each entry of C is computable in time O(n2). Since C has
|A|·|R1

Vx
|2 = |A|·nec1(Vx)

2 entries, we can compute C in time O(|A|·nec1(Vx)
2 ·n2). Furthermore,

by Lemma 4.7, a basis of maximum weight of C can be computed in time O(|A| ·nec1(Vx)
2(ω−1)).

We conclude that B can be computed in time O(|A| · nec1(Vx)
2(ω−1) · n2).

Now to boost up a dynamic programming algorithm P on some rooted layout (T, δ) of
G, we can use the function reduce to keep the size of the sets of partial solutions bounded
by s-nec1(T, δ)2. We call P ′ the algorithm obtained from P by calling the function reduce at
every step of computation. We can assume that the set of partial solutions Ar computed by
P and associated with the root r of (T, δ) contains an optimal solution (this will be the cases
in our algorithms). To prove the correctness of P ′, we need to prove that A′

r (r,∅)-represents
Ar where A′

r is the set of partial solutions computed by P ′ and associated with r. For doing
so, we need to prove that at each step of the algorithm the operations we use preserve the
(x,R′)-representativity. The following fact states that we can use the union without restriction,
it follows directly from Definition 4.34 of (x,R′)-representativity.

Fact 4.36. If B and D (x,R′)-represents, respectively, A and C, then B ∪ D (x,R′)-represents
A ∪ C.

The second operation we use in our dynamic programming algorithms is the merging operator⊗
. In order to safely use it, we need the following notion of compatibility that just tells which

partial solutions from Va and Vb can be joined to possibly form a partial solution in Vx. (It was
already used in [18] without naming it.)
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Definition 4.37 (d-(R,R′)-compatibility). Suppose that x is an internal node of T with a and b
as children. Let d ∈ N+ and R ∈ Rd

Vx
. We say that (A,A′) ∈ Rd

Va
×Rd

Va
and (B,B′) ∈ Rd

Vb
×Rd

Vb

are d-(R,R′)-compatible if we have:

• A ∪B ≡d
Vx

R,

• A′ ≡d
Va

B ∪R′, and

• B′ ≡d
Vb

A ∪R′.

The d-(R,R′)-compatibility just tells which partial solutions from Va and Vb can be joined
to possibly form a partial solution in Vx.

Lemma 4.38. Suppose that x is an internal node of T with a and b as children. Let d ∈ N+

and R ∈ Rd
Vx

. Let (A,A′) ∈ Rd
Va

×Rd
Va

and (B,B′) ∈ Rd
Vb

×Rd
Vb

that are d-(R,R′)-compatible.
Let A ⊆ 2Va such that, for all X ∈ A, we have X ≡d

Va
A, and let B ⊆ 2Vb such that, for all

W ∈ B, we have W ≡d
Vb

B. If A′ ⊆ A (a,A′)-represents A and B′ ⊆ B (b, B′)-represents B, then
A′⊗B′ (x,R′)-represents A

⊗
B.

Proof. We assume w.l.o.g. that opt = max, the proof is symmetric for opt = min. Suppose that
A′ ⊆ A (a,A′)-represents A and B′ ⊆ B (b, B′)-represents B. To prove the lemma, it is sufficient
to prove that best(A′⊗B′, Y ) = best(A

⊗
B, Y ) for every Y ≡1

Vx
R′.

Let Y ⊆ Vx such that Y ≡1
Vx

R′. We start by proving the following facts

(a) for every W ∈ B, we have W ∪ Y ≡1
Va

A′,

(b) for every X ∈ A, we have X ∪ Y ≡1
Vb

B′.

Let W ∈ B. Owing to the d-(R,R′)-compatibility, we have B ∪ R′ ≡d
Va

A′. Since W ≡d
Vb

B and
Vb ⊆ Va, by Fact 4.32, we deduce that W ≡d

Va
B and thus W ∪R′ ≡d

Va
A′. In particular, we have

W ∪ R′ ≡1
Va

A′. Similarly, we have from Fact 4.32 that W ∪ Y ≡1
Va

A′ because Y ≡1
Vx

R′ and
Vx ⊆ Va. This proves Fact (a). The proof for Fact (b) is symmetric.

Now observe that, by the definitions of best and of the merging operator
⊗

, we have (even
if A = ∅ or B = ∅)

best
(
A
⊗

B, Y
)
= max{w(X) + w(W ) : X ∈ A ∧W ∈ B ∧G[X ∪W ∪ Y ] is connected}.

Since best(A,W ∪ Y ) = max{w(X) : X ∈ A ∧G[X ∪W ∪ Y ] is connected}, we deduce that

best
(
A
⊗

B, Y
)
= max{best(A,W ∪ Y ) + w(W ) : W ∈ B}.

Since A′ (a,A′)-represents A, by Fact (a), we have

best
(
A
⊗

B, Y
)
= max{best(A′,W ∪ Y ) + w(W ) : W ∈ B}

= best
(
A′
⊗

B, Y
)
.

Symmetrically, we deduce from Fact (b) that best
(
A′⊗B, Y

)
= best

(
A′⊗B′, Y

)
. This stands

for every Y ⊆ Vx such that Y ≡1
Vx

R′. Thus, we conclude that A′⊗B′ (x,R′)-represents
A
⊗

B.
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4.2.3 Connected variant of (σ, ρ)-Dominating Set problems

In this subsection, we use the function d defined in Section 4.1. We remind that d(N) := 0, and
for a finite or co-finite subset µ of N, let

d(µ) := 1 +min(max(µ),max(N \ µ)).

Let d := max{1, d(σ), d(ρ)}. As explained in Subsection 4.1.3 to characterize the (σ, ρ)-
domination it is enough to count up to d neighbors (see Fact 4.19). As in [18], we use the
d-neighbor equivalence relation to characterize the (σ, ρ)-domination of the partial solutions. We
will need the following lemma in our proof.

Lemma 4.39 ([18]). Let A ⊆ V (G). Let X ⊆ A and Y, Y ′ ⊆ A such that Y ≡d
A

Y ′. Then
(X ∪ Y ) (σ, ρ)-dominates A if and only if (X ∪ Y ′) (σ, ρ)-dominates A.

In this subsection, we present an algorithm that computes a maximum (or minimum) con-
nected (σ, ρ)-dominating set with a graph G and a layout (T, δ) as inputs. Its running time is
O(s-necd(T, δ)O(1) ·n3). The same algorithm, with some little modifications, will be able to find a
minimum Steiner tree or a maximum (or minimum) connected co-(σ, ρ)-dominating set as well.

For each node x of T and for each pair (R,R′) ∈ Rd
Vx

×Rd
Vx

, we will compute a set of partial
solutions Dx[R,R′] coherent with (R,R′) that (x,R′)-represents the set of all partial solutions
coherent with (R,R′). We say that a set X ⊆ Vx is coherent with (R,R′) if X ≡d

Vx
R and X ∪R′

(σ, ρ) dominates Vx. Observe that by Lemma 4.39, we have X ∪ Y (σ, ρ)-dominates Vx, for all
Y ≡d

Vx
R′ and for all X ⊆ Vx coherent with (R,R′). We compute these sets by a bottom-up

dynamic programming algorithm, starting at the leaves of T . The computational steps are trivial
for the leaves. For the internal nodes of T , we simply use the notion of d-(R,R′)-compatibility
and the merging operator.

By calling the function reduce defined in Section 4.2.2, each set Dx[R,R′] contains at most
s-nec1(T, δ)2 partial solutions. If we want to compute a maximum (resp. minimum) connected
(σ, ρ)-dominating set, we use the framework of Section 4.2.2 with opt = max (resp. opt = min).
If G admits a connected (σ, ρ)-dominating set, then a maximum (or minimum) connected (σ, ρ)-
dominating set can be found by looking at the entry Dr[∅,∅] with r the root of T .

We begin by defining the sets of partial solutions for which we will compute representative
sets.

Definition 4.40. Let x ∈ V (T ). For all pairs (R,R′) ∈ Rd
Vx

×Rd
Vx

, we let Ax[R,R′] := {X ⊆
Vx : X ≡d

Vx
R and X ∪R′ (σ, ρ)-dominates Vx}.

For each node x of V (T ), our algorithm will compute a table Dx that satisfies the following
invariant.

Invariant. For every (R,R′) ∈ Rd
Vx

×Rd
Vx

, the set Dx[R,R′] is a subset of Ax[R,R′] of size at
most s-nec1(T, δ)2 that (x,R′)-represents Ax[R,R′].

Notice that, by the definition of Ar[∅,∅] (r being the root of T ) and the definition of (x,R′)-
representativity, if G admits a connected (σ, ρ)-dominating set, then Dr[∅,∅] must contain a
maximum (or minimum) connected (σ, ρ)-dominating set.

The following lemma provides an equality between the entries of the table Ax and the entries
of the tables Aa and Ab for each internal node x ∈ V (T ) with a and b as children. We use this
lemma to prove, by induction, that the entry Dx[R,R′] (x,R′)-represents Ax[R,R′] for every
(R,R′) ∈ Rd

Vx
×Rd

Vx
. Note that this lemma can be deduced from [18].
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Lemma 4.41. For all (R,R′) ∈ Rd
Vx

×Rd
Vx

, we have

Ax[R,R′] =
⋃

(A,A′), (B,B′) d-(R,R′)-compatible

Aa[A,A
′]
⊗

Ab[B,B′].

Proof. The lemma is implied by the two following claims.

Claim 4.41.1. For all X ∈ Ax[R,R′], there exist d-(R,R′)-compatible pairs (A,A′) and (B,B′)
such that X ∩ Va ∈ Aa[A,A

′] and X ∩ Vb ∈ Ab[B,B′].

Proof. Let X ∈ Ax[R,R′], Xa := X ∩ Va and Xb := X ∩ Vb. Let A := repdVa
(Xa) and A′ :=

repd
Va
(Xb ∪R′). Symmetrically, we define B := repdVb

(Xb) and B′ := repd
Vb
(Xa ∪R′).

We claim that Xa ∈ Aa[A,A
′]. As X ∈ Ax[R,R′], we know, by Definition 4.40, that X∪R′ =

Xa ∪ Xb ∪ R′ is a (σ, ρ)-dominating set of Vx. In particular, Xa ∪ (Xb ∪ R′) (σ, ρ)-dominates
Va. Since A′ ≡d

Va
Xb ∪ R′, by Lemma 4.39, we conclude that Xa ∪ A′ (σ, ρ)-dominates Va. As

A ≡d
Va

Xa, we have Xa ∈ Aa[A,A
′]. By symmetry, we deduce B ∈ Ab[B,B′].

It remains to prove that (A,A′) and (B,B′) are d-(R,R′)-compatible.

• By construction, we have Xa ∪Xb = X ≡d
Vx

R. As A ≡d
Va

Xa and from Fact 4.32, we have
A ∪Xb ≡d

Vx
R. Since B ≡d

Vb
Xb, we deduce that A ∪B ≡d

Vx
R.

• By definition, we have A′ ≡d
Va

Xb ∪ R′. As B ≡d
Vb

Xb and by Fact 4.32, we have A′ ≡d
Va

B ∪R′. Symmetrically, we deduce that B′ ≡d
Vb

R′ ∪A.

Thus, (A,A′) and (B,B′) are d-(R,R′)-compatible.

Claim 4.41.2. For every Xa ∈ Aa[A,A
′] and Xb ∈ Ab[B,B′] such that (A,A′) and (B,B′) are

d-(R,R′)-compatible, we have Xa ∪Xb ∈ Ax[R,R′].

Proof. Since Xa ≡d
Va

A and Xb ≡d
Vb

B, by Fact 4.32, we deduce that Xa ∪Xb ≡d
Vx

A ∪B. Thus,
by the definition of d-(R,R′)-compatibility, we have Xa ∪Xb ≡d

Vx
R.

It remains to prove that Xa∪Xb∪R′ (σ, ρ)-dominates Vx. As before, one can check that Fact
4.32 implies that Xb ∪R′ ≡d

Va
B ∪R′. From Lemma 4.39, we conclude that Xa ∪Xb ∪R′ (σ, ρ)-

dominates Va. Symmetrically, we prove that Xa ∪Xb ∪R′ (σ, ρ)-dominates Vb. As Vx = Va ∪ Vb,
we deduce that Xa ∪Xb ∪R′ (σ, ρ)-dominates Vx. Hence, we have Xa ∪Xb ∈ Ax[R,R′].

We are now ready to prove the main theorem of this subsection.

Theorem 4.42. There exists an algorithm that, given an n-vertex graph G and a rooted lay-
out (T, δ) of G, computes a maximum (or minimum) connected (σ, ρ)-dominating set in time
O(s-necd(T, δ)3 · s-nec1(T, δ)2(ω+1) · log(s-necd(T, δ)) · n3) with d := max{1, d(σ), d(ρ)}.

Proof. The algorithm is a usual bottom-up dynamic programming algorithm and computes for
each node x of T the table Dx.

The first step of our algorithm is to compute, for each x ∈ V (T ), the sets Rd
Vx

, Rd
Vx

and a
data structure to compute repdVx

(X) and repd
Vx
(Y ), for any X ⊆ Vx and any Y ⊆ Vx, in time

O(log(s-necd(T, δ)) ·n2). As T has 2n−1 nodes, by Lemma 4.33, we can compute these sets and
data structures in time O(s-necd(T, δ) · log(s-necd(T, δ)) · n3).
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Let x be a leaf of T with Vx = {v}. Observe that, for all (R,R′) ∈ RVx
d × RVx

d , we have
Ax[R,R′] ⊆ 2Vx = {∅, {v}}. Thus, our algorithm can directly compute Ax[R,R′] and set
Dx[R,R′] := Ax[R,R′]. In this case, the invariant trivially holds.

Now let x be an internal node with a and b as children such that the invariant holds for a
and b. For each (R,R′) ∈ Rd

Vx
× Rd

Vx
, the algorithm computes Dx[R,R′] := reduce(Bx[R,R′]),

where the set Bx[R,R′] is defined as follows

Bx[R,R′] :=
⋃

(A,A′), (B,B′) d-(R,R′)-compatible

Da[A,A
′]
⊗

Db[B,B′].

We claim that the invariant holds for x. Let (R,R′) ∈ Rd
Vx

×Rd
Vx

.
We start by proving that the set Bx[R,R′] is an (x,R′)-representative set of Ax[R,R′]. By

Lemma 4.38, for all d-(R,R′)-compatible pairs (A,A′) and (B,B′), we have

Da[A,A
′]
⊗

Db[B,B′] (x,R′)-represents Aa[A,A
′]
⊗

Ab[B,B′].

By Lemma 4.41 and by construction of Dx[R,R′] and from Fact 4.36, we conclude that Bx[R,R′]
(x,R′)-represents Ax[R,R′].

From the invariant, we have Da[A,A
′] ⊆ Aa[A,A

′] and Db[B,B′] ⊆ Ab[B,B′], for all d-
(R,R′)-compatible pairs (A,A′) and (B,B′). Thus, from Lemma 4.41, it is clear that by construc-
tion, we have Bx[R,R′] ⊆ Ax[R,R′]. Hence, Bx[R,R′] is a subset and an (x,R′)-representative
set of Ax[R,R′].

Notice that, for each X ∈ Bx[R,R′], we have X ≡d
Vx

R. Thus, we can apply Theorem
4.35 and the function reduce on Bx[R,R′]. By Theorem 4.35, Dx[R,R′] is a subset and an
(x,R′)-representative set of Bx[R,R′]. Thus Dx[R,R′] is a subset of Ax[R,R′]. Notice that the
(x,R′)-representativity is an equivalence relation and in particular it is transitive. Consequently,
Dx[R,R′] (x,R′)-represents Ax[R,R′]. From Theorem 4.35, the size of Dx[R,R′] is at most
nec1(Vx)

2 and that Dx[R,R′] ⊆ Bx[R,R′]. As nec1(Vx) ≤ s-nec1(T, δ) and Bx[R,R′] ⊆ Ax[R,R′],
we conclude that the invariant holds for x.

By induction, the invariant holds for all nodes of T . The correctness of the algorithm follows
from the fact that Dr[∅,∅] (r,∅)-represents Ar[∅,∅].

Running Time. Let x be a node of T . Suppose first that x is a leaf of T . Then |Rd
Vx
| ≤ 2

and |Rd
Vx
| ≤ d. Thus, Dx can be computed in time O(d · n).

Assume now that x is an internal node of T with a and b as children.
Notice that, by Definition 4.37, for every (A,B,R′) ∈ Rd

Va
× Rd

Vb
× Rd

Vx
, there exists only

one tuple (A′, B′, R) ∈ Rd
Va

×Rd
Vb
×Rd

Vx
such that (A,A′) and (B,B′) are d-(R,R′)-compatible.

More precisely, you have to take R = repdVx
(A∪B), A′ = repd

Va
(R′ ∪B), and B′ = repd

Vb
(R′ ∪A).

Thus, there are at most s-necd(T, δ)3 tuples (A,A′, B,B′, R,R′) such that (A,A′) and (B,B′)
are d-(R,R′)-compatible. It follows that we can compute the intermediary table Bx by doing the
following.

• Initialize each entry of Bx to ∅.

• For each (A,B,R′) ∈ Rd
Va

×Rd
Vb

×Rd
Vx

, compute R′ := repdVx
(A∪B), A′ = repd

Va
(R′ ∪B),

and B′ = repd
Vb
(R′ ∪A). Then, update Bx[R,R′] := Bx[R,R′] ∪ (Da[A,A

′]
⊗

Db[B,B′]).
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Each call to the functions repdVx
, repd

Va
, and repd

Vb
takes O(log(s-necd(T, δ)) ·n2) time. We deduce

that the running time to compute the entries of Bx is

O

s-necd(T, δ)3 log(s-necd(T, δ)) · n2 +
∑

(R,R′)∈Rd
Vx

×Rd
Vx

|Bx[R,R′]| · n2

 .

Observe that, for each (R,R′) ∈ Rd
Vx

× Rd
Vx

, by Theorem 4.35, the running time to compute
reduce(Bx[R,R′]) from Bx[R,R′] is O(|Bx[R,R′]| · s-nec1(T, δ)2(ω−1) ·n2). Thus, the total running
time to compute the table Dx from the table Bx is

O

 ∑
(R,R′)∈Rd

Vx
×Rd

Vx

|Bx[R,R′]| · log(s-necd(T, δ)) · s-nec1(T, δ)2(ω−1) · n2

 . (4.3)

For each (A,A′) and (B,B′), the size of Da[A,A
′]
⊗

Db[B,B′] is at most |Da[A,A
′]|·|Db[B,B′]| ≤

s-nec1(T, δ)4. Since there are at most s-necd(T, δ)3 pairs d-(R,R′)-compatible, we can conclude
that ∑

(R,R′)∈Rd
Vx

×Rd
Vx

|Bx[R,R′]| ≤ s-necd(T, δ)3 · s-nec1(T, δ)4.

From Equation (1), we deduce that the entries of Dx are computable in time

O(s-necd(T, δ)3 · s-nec1(T, δ)2(ω+1) · log(s-necd(T, δ)) · n2).

Since T has 2n−1 nodes, the running time of our algorithm is O(s-necd(T, δ)3 ·s-nec1(T, δ)2(ω+1) ·
log(s-necd(T, δ)) · n3).

As a corollary, we can solve in time s-nec1(T, δ)(2ω+5) · log(s-nec1(T, δ)) · n3 the Node-
Weighted Steiner Tree problem that asks, given a subset of vertices K ⊆ V (G) called
terminals, a subset T of minimal weight such that K ⊆ T ⊆ V (G) and G[T ] is connected.

Corollary 4.43. There exists an algorithm that, given an n-vertex graph G, a subset K ⊆ V (G),
and a rooted layout (T, δ) of G, computes a minimum node-weighted Steiner tree for (G,K) in
time O(s-nec1(T, δ)(2ω+5) · log(s-nec1(T, δ)) · n3).

Proof. Observe that a Steiner tree is a minimum connected (N,N)-dominating set of G that
contains K. Thus, it is sufficient to change the definition of the table Ax as follows. Let x ∈ V (T ).
For all (R,R′) ∈ R1

Vx
×R1

Vx
, we define Ax[R,R′] ⊆ Vx as follows

Ax[R,R′] := {X ⊆ Vx : X ≡d
Vx

R, K ∩ Vx ⊆ X, and X ∪R′ (N,N)-dominates Vx}.

Notice that this modification will just modify the way we compute the table Dx when x is a
leaf of T associated with a vertex in K. With this definition of Ax and by Definition 4.34 of
(x,R′)-representativity, if G contains an optimal solution, then Dr[∅,∅] contains an optimal
solution of G. The running time comes from the running time of Theorem 4.42 with d = 1.

Because the incidence graph of a graph of tree-width k has tree-width at most k + 1, and
one can reduce the computation of a weighted Steiner tree on a graph to the computation of
a node-weighted Steiner tree on its incidence graph, we simplify and generalise the algorithm
from [9]. With few modifications, we can easily deduce an algorithm to compute a maximum (or
minimum) connected co-(σ, ρ)-dominating set.

110



Corollary 4.44. There exists an algorithm that, given an n-vertex graph G and a rooted layout
(T, δ) of G, computes a maximum (or minimum) connected co-(σ, ρ)-dominating set in time
O(s-necd(T, δ)3 · s-nec1(T, δ)(2ω+5) · log(s-necd(T, δ)) · n3) with d := max{1, d(σ), d(ρ)}.

Proof. To find a maximum (or minimum) co-(σ, ρ)-dominating set, we need to modify the
definition of the table Ax, the invariant and the computational steps of the algorithm from
Theorem 4.42. For each vertex x ∈ V (T ), we define the set of indices of our table Dx as
Ix := Rd

Vx
×Rd

Vx
×R1

Vx
×R1

Vx
.

For all (R,R′, R,R
′
) ∈ Ix, we define Ax[R,R′, R,R

′
] ⊆ 2Vx as the following set

{X ⊆ Vx : X ≡1
Vx

R, (Vx \X) ≡d
Vx

R, and (Vx \X) ∪R′ (σ, ρ)-dominates Vx}.

It is worth noticing that the definition of Ax does not depend on R
′, it is just more convenient

to write the proof this way in order to obtain an algorithm similar to the one from Theorem
4.42.

Similarly to Theorem 4.42, for each node x of V (T ), our algorithm will compute a table Dx

that satisfies the following invariant.

Invariant. For every (R,R′, R,R
′
) ∈ Ix, the set Dx[R,R′, R,R

′
] is a subset of Ax[R,R′, R,R

′
]

of size at most s-nec1(T, δ)2 that (x,R
′
)-represents Ax[R,R′, R,R

′
].

Intuitively, we use R and R
′ to deal with the connectivity constraint of the co-(σ, ρ)-

dominating set and R and R′ for the (σ, ρ)-domination.
The following claim adapts Lemma 4.41 to the co-(σ, ρ)-dominating set case.

Claim 4.44.1. Let x be an internal node of T with a and b as children. For all (R,R′, R,R
′
) ∈ Ix,

we have

Ax[R,R′, R,R
′
] :=

⋃
(A,A′), (B,B′) d-(R,R′)-compatible
(A,A′), (B,B′) 1-(R,R

′
)-compatible

Aa[A,A
′, A,A′]

⊗
Ab[B,B′, A,A′].

The proof of this claim follows from the proof of Lemma 4.41. With these modifications,
it is straightforward to check that the algorithm of Theorem 4.42 can be adapted to compute
a minimum or maximum connected co-(σ, ρ)-dominating set of V (G). With the same analysis
as in Theorem 4.42, one easily deduces that the running time of this modified algorithm is
O(s-necd(T, δ)3 · s-nec1(T, δ)(2ω+5) · log(s-necd(T, δ)) · n3).

4.2.4 Acyclic and AC variants of (σ, ρ)-Dominating Set problems

In this subsection, we present an algorithm that solves any AC-(σ, ρ)-Dominating Set problem.
Examples of such problems are given in Table 1.1. Unfortunately, we were not able to obtain an
algorithm whose running time is polynomial in n and the d-neighbor-width of the given layout
(for some constant d). But, for the other parameters, by using their respective properties, we
get the running time presented in Table 4.3 which are roughly the same as those in the previous
subsection. Moreover, we show, via a polynomial reduction, that we can use our algorithm for
AC-(σ, ρ)-Dominating Set problems (with some modifications) to solve any Acyclic (σ, ρ)-
Dominating Set problem.

Let us first explain why we cannot use the same trick as in [9] on the algorithms of Section
4.1.3 to ensure the acyclicity, that is classifying the partial solutions X – associated with a node
x ∈ V (T ) – with respect to |X| and |E(G[X])|. Indeed, for two sets X,W ⊆ Vx with |X| = |W |
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Table 4.3: Upper bounds on the running time of our algorithms for an AC-(σ, ρ)-Dominating
Set problem with L = (T, δ) and d := max{2, d(σ), d(ρ)}.

Parameter Running time

Mim-width O(n(2ω+3d+4)mim(L)+4 ·mim(L))

Module-width O((d+ 1)3mw(L) · 2(2ω+3)mw(L) ·mw(L) · n4)

Rank-width O(2(2ω+3d+4)rw(L)2 · rw(L) · n4)

Q-rank-width O(2(2ω+5)rwQ(L) log2(d·rwQ(L)) · rwQ(L) · n4)

and |E(G[X])| = |E(G[W ])|, we have |E(G[X ∪ Y ])| = |E(G[W ∪ Y ])|, for all Y ⊆ Vx, if and
only if X ≡n

Vx
W . Hence, the trick used in [9] would imply to classify the partial solutions with

respect to their n-neighbor equivalence class. But, the upper bounds we have on necn(Vx) with
respect to module-width, (Q-)rank-width would lead to an XP algorithm. In fact, for every k ∈ N
and every n ≥ 2k, one can construct an n-vertex bipartite graph Hk[A,A] where mw(A) = k and
necn(A) = (n/mw(A))mw(A) (see Figure 4.2). Since both rw(A) and rwQ(A) are upper-bounded
by mw(A), we deduce that using the trick of [9] would give, for each f ∈ {mw, rw, rwQ}, an
nΩ(f(T,δ)) time algorithm.

A

A

A1 A2 Ak

v1 v2 vk

Figure 4.2: Bipartite graph Hk[A,A] where mw(A) = k and necn(A) = (n/mw(A))mw(A). Each
Ai’s contains n− k/k vertices whose neighborhoods are {vi}.

In the following, we introduce some new concepts that extends the framework designed
in Section 4.2.2 in order to manage acyclicity. All along, we give intuitions on these concepts
through a concrete example: Maximum Induced Tree. Finally, we present the algorithms for
the AC-(σ, ρ)-Dominating Set problems and the algorithms for Acyclic (σ, ρ)-Dominating
Set problems.

We start by defining a new notion of representativity to deal with the acyclicity constraint.
This new notion of representativity is defined w.r.t. to the 2-neighbor equivalence class of a set
R′ ⊆ Vx. We consider 2-neighbor equivalence classes instead of 1-neighbor equivalence classes in
order to manage the acyclicity (see the following explanations). Similarly to Section 4.2.2, every
concept introduced in this section is defined with respect to a node x of T and a set R′ ⊆ Vx. To
simplify this section, we fix a node x of T and R′ ⊆ Vx. In our algorithm, R′ will always belong
to Rd

Vx
for some d ∈ N+ with d ≥ 2. For Maximum Induced Tree d = 2 is enough and in

general, we use d := max{2, d(σ), d(ρ)}.
The following definition extends Definition 4.34 of Section 4.2.2 to deal with the acyclicity.

We let opt ∈ {min,max}; if we want to solve a maximization (or minimization) problem, we use
opt = max (or opt = min).
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Definition 4.45 ((x,R′)acy-representativity). For every A ⊆ 2V (G) and Y ⊆ V (G), we define

best(A, Y )acy := opt{w(X) : X ∈ A and G[X ∪ Y ] is a tree}.

Let A,B ⊆ 2Vx . We say that B (x,R′)acy-represents A if, for every Y ⊆ Vx such that Y ≡2
Vx

R′, we have bestacy(A, Y ) = bestacy(B, Y ).

As for the (x,R′)-representativity, we need to prove that the operations we use in our algo-
rithm preserve the (x,R′)acy-representativity. The following fact follows from Definition 4.45 of
(x,R′)acy-representativity.

Fact 4.46. If B and D (x,R′)acy-represents, respectively, A and C, then B ∪ D (x,R′)acy-
represents A ∪ C.

The following lemma is an analog of Lemma 4.38 for the notion of (x,R′)acy-representativity.
The proof is almost the same as the one of Lemma 4.38. We refer to Definition 4.37 for the
notion of d-(R,R′)-compatibility.

Lemma 4.47. Let d ∈ N+ such that d ≥ 2. Suppose that x is an internal node of T with a
and b as children. Let R ∈ Rd

Vx
. Let (A,A′) ∈ Rd

Va
× Rd

Va
and (B,B′) ∈ Rd

Vb
× Rd

Vb
that are

d-(R,R′)-compatible. Let A ⊆ 2Va such that, for all X ∈ A, we have X ≡d
Va

A, and let B ⊆ 2Vb

such that, for all W ∈ B, we have W ≡d
Vb

B.
If A′ ⊆ A (a,A′)acy-represents A and B′ ⊆ B (b, B′)acy-represents B, then

A′
⊗

B′ (x,R′)acy-represents A
⊗

B.

Proof. Suppose that A′ ⊆ A (a,A′)acy-represents A and that B′ ⊆ B (b, B′)acy-represents
B. In order to prove this lemma, it is sufficient to prove that, for each Y ≡2

Vx
R′, we have

bestacy(A′⊗B′, Y ) = bestacy(A
⊗

B, Y ).
Let Y ⊆ Vx such that Y ≡2

Vx
R′. We claim the following facts

(a) for every W ∈ B, we have W ∪ Y ≡2
Va

A′,

(b) for every X ∈ A, we have X ∪ Y ≡2
Vb

B′.

Let W ∈ B. By Fact 4.32, we have that W ≡d
Va

B because Vb ⊆ Va and W ≡d
Vb

B. Since d ≥ 2,
we have W ≡2

Va
B. By Fact 4.32, we deduce also that Y ≡2

Va
R′. Since (A,A′) and (B,B′) are

d-(R,R′)-compatible, we have A′ ≡d
Va

R′∪B. In particular, we have A′ ≡2
Va

R′∪B because d ≥ 2.
We can conclude that W ∪ Y ≡2

Va
A′ for every W ∈ B. The proof for Fact (b) is symmetric.

Now observe that, by the definitions of bestacy and of the merging operator
⊗

, we have

bestacy
(
A
⊗

B, Y
)
= opt{w(X) + w(W ) : X ∈ A ∧W ∈ B ∧G[X ∪W ∪ Y ] is a tree}.

Since bestacy(A,W ∪ Y ) = opt{w(X) : X ∈ A ∧G[X ∪W ∪ Y ] is a tree}, we deduce that

bestacy
(
A
⊗

B, Y
)
= opt{bestacy(A,W ∪ Y ) + w(W ) : W ∈ B}.

Since A′ (a,A′)-represents A and by Fact (a), we have

bestacy
(
A
⊗

B, Y
)
= opt{bestacy(A′,W ∪ Y ) + w(W ) : W ∈ B}

= bestacy
(
A′
⊗

B, Y
)
.

Symmetrically, we deduce from Fact (b) that bestacy
(
A′⊗B, Y

)
= bestacy

(
A′⊗B′, Y

)
. This

stands for every Y ⊆ Vx such that Y ≡2
Vx

R′. Thus, we conclude that A′⊗B′ (x,R′)acy-
represents A

⊗
B.
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In order to compute a maximum induced tree, we design an algorithm similar to those
of Section 4.1.3. That is, for each (R,R′) ∈ R2

Vx
× R2

Vx
, our algorithm will compute a set

Dx[R,R′] ⊆ 2Vx that is an (x,R′)acy-representative set of small size of the set Ax[R] := {X ⊆ Vx

such that X ≡2
Vx

R}. This is sufficient to compute a maximum induced tree of G since we have
Ar[∅] = 2V (G) with r the root of T . Thus, by Definition 4.45, any (r,∅)acy-representative set of
Ar[∅] contains a maximum induced tree.

The key to compute the tables of our algorithm is a function that, given A ⊆ 2Vx , computes
a small subset of A that (x,R′)acy-represents A. This function starts by removing from A some
sets that will never give a tree with a set Y ≡2

Vx
R′. For doing so, we characterize the sets X ∈ A

such that G[X ∪ Y ] is a tree for some Y ≡2
Vx

R′. We call these sets R′-important. The following
gives a formal definition of these important and unimportant partial solutions.

Definition 4.48 (R′-important). We say that X ⊆ Vx is R′-important if there exists Y ⊆ Vx

such that Y ≡2
Vx

R′ and G[X ∪ Y ] is a tree, otherwise, we say that X is R′-unimportant.

By definition, any set obtained from a set A by removing R′-unimportant sets is an (x,R′)acy-
representative set of A. The following lemma gives some necessary conditions on R′-important
sets. It follows that any set which does not respect one of these conditions can safely be removed
from A. These conditions are the key to obtain the running times of Table 4.2. At this point,
we need to introduce the following notations. For every X ⊆ Vx, we define X0 := {v ∈ X :
N(v) ∩ R′ = ∅}, X1 := {v ∈ X : |N(v) ∩ R′| = 1}, and X2+ := {v ∈ X : |N(v) ∩ R′| ≥ 2}.
Notice that, for every Y ≡2

Vx
R′ and X ⊆ Vx, the vertices in X0 have no neighbor in Y , those

in X1 have exactly one neighbor in Y and those in X2+ have at least 2 neighbors in Y .
In order to prove the lemma, we need the properties of the 2-neighbor equivalence relation.

More precisely, we use the fact that, for all X ⊆ Vx and Y ≡2
Vx

R′, the vertices in X having
at least two neighbors in Y correspond exactly to those having at least two neighbors in R′.
These vertices play a major role in the acyclicity and the computation of representatives in the
following sense. By removing from A the sets that do not respect the two above properties, we are
able to decompose A into a small number of sets A1, . . . ,At such that an (x,R′)-representative
set of Ai is an (x,R′)acy-representative set of Ai for each i ∈ {1, . . . , t}. We find an (x,R′)acy-
representative set of A, by computing an (x,R′)-representative set Bi for each Ai with the
function reduce. This is sufficient because B1 ∪ · · · ∪ Bt is an (x,R′)acy-representative set of A.

Lemma 4.49. If X ⊆ Vx is R′-important, then G[X] is a forest and the following properties
are satisfied:

1. for every pair of distinct vertices a and b in X2+, we have N(a) ∩ Vx ̸= N(b) ∩ Vx,

2. |X2+| is upper bounded by 2mim(Vx), 2rw(Vx), 2rwQ(Vx), and 2 log2(nec1(Vx)).

Proof. Obviously, any R′-important set must induce a forest.
Let X ⊆ Vx be an R′-important set. Since X is R′-important, there exists Y ⊆ Vx such that

Y ≡2
Vx

R′ and G[X ∪ Y ] is a tree.
Assume towards a contradiction that there exist two distinct vertices a and b in X2+ such

that N(a) ∩ Vx = N(b) ∩ Vx. Since a and b belong to X2+ and Y ≡2
Vx

R′, both a and b have at
least two neighbors in Y . Thus, a and b have at least two common neighbors in Y . We conclude
that G[X∪Y ] admits a cycle of length four, yielding a contradiction. We conclude that Property
(1) holds for every R′-important set.

Now, we prove that Property (2) holds for X. Observe that, by Theorem 2.32, mim(Vx) is
upper bounded by rw(Vx), rwQ(Vx), and log2(nec1(Vx)). Thus, in order to prove Property (2), it
is sufficient to prove that |X2+| ≤ 2mim(Vx).
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We claim that |X2+| ≤ 2k where k is the size of a maximum induced matching of F :=
G[X2+, Y ]. Since F is an induced subgraph of G[Vx, Vx], we have k ≤ mim(Vx) and this is
enough to prove Property (2). Notice that F is a forest because F is a subgraph of G[X ∪ Y ],
which is a tree.

In the following, we prove that F admits a good bipartition, that is a bipartition {X1, X2}
of X2+ ∩ V (F ) such that, for each i ∈ {1, 2} and, for each v ∈ Xi, there exists yv ∈ Y ∩ V (F )
such that NF (yv) ∩ Xi = {v}. Observe that this is enough to prove Property (2) since if F
admits a good bipartition {X1, X2}, then |X1| ≤ k and |X2| ≤ k. Indeed, if F admits a good
bipartition {X1, X2}, then, for each i ∈ {1, 2}, the set of edges Mi = {vyv : v ∈ Xi} is an
induced matching of F . In order to prove that F admits a good bipartition it is sufficient to
prove that each connected component of F admits a good bipartition.

Let C ∈ cc(F ) and u ∈ C ∩X2+. As F is a forest, F [C] is a tree. Observe that the distance
in F between each vertex v ∈ C ∩X2+ and u is even because F := G[X2+, Y ]. Let C1 (resp. C2)
be the set of all vertices v ∈ C ∩X2+ such that there exists an odd (resp. even) integer ℓ ∈ N
so that the distance between v and u in F is 2i. We claim that {C1, C2} is a good bipartition of
F [C].

Let i ∈ {1, 2}, v ∈ Ci and ℓ ∈ N such that the distance between v and u in F is 2ℓ. Let P be
the set of vertices in V (F ) \ {v} that share a common neighbor with v in F . We want to prove
that there exists y ∈ Y such that NF (y) ∩ Ci = {v}. For doing so, it is sufficient to prove that
NF (v) \NF (Ci \ {v}) = NF (v) \NF (P ∩ Ci) ̸= ∅. Observe that, for every v′ ∈ P , the distance
between v′ and u in F is either 2ℓ − 2, 2ℓ or 2ℓ + 2 because F [C] is a tree and the distance
between v and u is 2ℓ. By construction of {C1, C2}, every vertex at distance 2ℓ− 2 and 2ℓ+ 2
from u must belong to C3−i. Thus, every vertex in P ∩ Ci is at distance 2ℓ from u. If ℓ = 0,
then we are done because v = u and P ∩ Ci = ∅. Assume that ℓ ̸= 0. As F [C] is a tree, v has
only one neighbor w at distance 2ℓ − 1 from u in F . Because F [C] is a tree, we deduce that
NF (v) ∩ NF (P ∩ Ci) = {w}. Since v ∈ X2+, v has at least two neighbors in F = G[X2+, Y ]
(because Y ≡2

Vx
R′), we conclude that NF (v)\NF (P ∩Ci) ̸= ∅. Hence, we deduce that {C1, C2}

is a good bipartition of F [C].
We deduce that every connected component of F admits a good bipartition and thus F

admits a good bipartition. Thus, |X2+| ≤ 2mim(Vx).

The following definition characterizes the sets A ⊆ 2Vx for which an (x,R′)-representative
set is also an (x,R′)acy-representative set.

Definition 4.50. We say that A ⊆ 2Vx is R′-consistent if, for each Y ⊆ Vx such that Y ≡2
Vx

R′,
if there exists W ∈ A such that G[W ∪ Y ] is a tree, then, for each X ∈ A, either G[X ∪ Y ] is a
tree or G[X ∪ Y ] is not connected.

The following lemma proves that an (x,R′)-representative set of an R′-consistent set is also
an (x,R′)acy-representative set of this later.

Lemma 4.51. Let A ⊆ 2Vx . For all D ⊆ A, if A is R′-consistent and D (x,R′)-represents A,
then D (x,R′)acy-represents A.

Proof. We assume that opt = max, the proof for opt = min is similar. Let Y ≡2
Vx

R′. If
bestacy(A, Y ) = −∞, then we also have bestacy(D, Y ) = −∞ because D ⊆ A.

Assume now that bestacy(A, Y ) ̸= −∞. Thus, there exists W ∈ A such that G[W ∪ Y ] is a
tree. Since A is R′-consistent, for all X ∈ A, the graph G[X ∪ Y ] is either a tree or it is not
connected. Thus, by Definition 4.34 of best, we have bestacy(A, Y ) = best(A, Y ). As D ⊆ A, we
have also bestacy(D, Y ) = best(D, Y ). We conclude by observing that if D (x,R′)-represents A,
then bestacy(D, Y ) = bestacy(A, Y ).
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The next lemma proves that, for each f ∈ {mw, rw, rwQ,mim}, we can decompose a set
A ⊆ 2Vx into a small collection {A1, . . . ,At} of pairwise disjoint subsets of A such that each
Ai is R′-consistent. Even though some parts of the proof are specific to each parameter, the
ideas are roughly the same. First, we remove the sets X in A that do not induce a forest. If
f = mw, we remove the sets in A that do not respect Condition (1) of Lemma 4.49, otherwise,
we remove the sets that do not respect the upper bound associated with f from Condition (2)
of Lemma 4.49. These sets can be safely removed as, by Lemma 4.49, they are R′-unimportant.
After removing these sets, we obtain the decomposition of A by taking the equivalence classes
of some equivalence relation that is roughly the n-neighbor equivalence relation. Owing to the
set of R′-unimportant sets we have removed from A, we prove that the number of equivalence
classes of this latter equivalence relation respects the upper bound associated with f that is
described in Table 4.4.

Lemma 4.52. Let A ⊆ 2Vx . For each f ∈ {mw, rw, rwQ,mim}, there exists a collection of
pairwise disjoint subsets A1, . . . ,At of A computable in time O(|A| · Nf(T, δ) · n2) such that

• A1 ∪ · · · ∪ At (x,R
′)acy-represents A,

• Ai is R′-consistent for each i ∈ {1, . . . , t} and

• t ≤ Nf(T, δ),

where Nf(T, δ) is the term defined in Table 4.4.

Table 4.4: Upper bounds Nf(T, δ) on the size of the decomposition of Lemma 4.52 for each
f ∈ {mw, rw, rwQ,mim}.

f mw rwQ rw mim

Nf(T, δ) 2mw(T,δ) · 2n (2rwQ(Vx) + 1)rwQ(Vx) · 2n 22rw(T,δ)
2 · 2n 2n2mim(T,δ)+1

Proof. We begin by defining an equivalence relation ∼ on 2Vx such that each equivalence class
of ∼ over 2Vx is an R′-consistent set.

For X ⊆ Vx, let σ(X) be the vector corresponding to the sum (over Q) of the row vectors
of MVx,Vx

corresponding to X. Notice that if σ(X) = σ(X ′), then X ≡d
Vx

X ′, for all d ∈ N+,
because the entries of σ(X) represent the number of neighbors in X for each vertex in Vx.
Moreover, if σ(X) = σ(X ′), then |E(G[X,Y ])| = |E(G[X ′, Y ])| for every Y ⊆ Vx.

We define the equivalence relation ∼ on 2Vx such that X ∼ W if we have σ(X2+) = σ(W 2+)
and |E(G[X])| − |X \X1| = |E(G[W ])| − |W \W 1|.

Intuitively, if X ∼ W , then, for all Y ≡2
Vx

R′, we have |E(G[X ∪ Y ])| = |X ∪ Y | − 1 if and
only if |E(G[W ∪Y ])| = |W ∪Y | − 1. Thus, if X ∼ W and both sets induce with Y a connected
graph, then both sets induce with Y a tree (because a graph F is a tree if and only if F is
connected and |V (F )| = |E(F )|−1). Consequently, an equivalence class of ∼ is an R′-consistent
set.

Claim 4.52.1. Let A′ ⊆ A. If, for all X,W ∈ A′, we have X ∼ W , then A′ is R′-consistent.

Proof. Suppose that X ∼ W for all X,W ∈ A′. In order to prove that A′ is R′-consistent, it is
enough to prove that, for each X,W ∈ A′ and Y ≡2

Vx
R′, if G[X ∪ Y ] is a tree and G[W ∪ Y ] is

connected, then G[W ∪ Y ] is a tree.
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Let Y ≡2
Vx

R′ and X,W ∈ A′. Assume that G[X ∪ Y ] is a tree and that G[W ∪ Y ] is
connected. We want to prove that G[W ∪ Y ] is a tree.

Since G[X ∪ Y ] is a tree, we have |E(G[X ∪ Y ])| = |X ∪ Y | − 1. Since the vertices in X0

have no neighbors in Y , we can decompose |E(G[X ∪Y ])| = |X ∪Y | − 1 to obtain the following
equality

|E(G[Y ])|+ |E(G[X2+, Y ])|+ |E(G[X1, Y ])|+ |E(G[X])| = |X ∪ Y | − 1. (4.4)

Since every vertex in X1 has exactly one neighbor in Y (because Y ≡2
Vx

R′) , we have
|E(G[X1, Y ])| = |X1|. Thus, Equation (1) is equivalent to

|E(G[Y ])|+ |E(G[X2+, Y ])|+ |E(G[X])| = |X \X1|+ |Y | − 1. (4.5)

Since X ∼ W , we have |E(G[X])| − |X \ X1| = |E(G[W ])| − |W \ W 1|. Moreover, owing to
σ(X2+) = σ(W 2+), we have |E(G(X2+, Y ))| = |E(G(W 2+, Y ))|. We conclude that Equation
(2) is equivalent to

|E(G[Y ])|+ |E(G[W 2+, Y ])|+ |E(G[W ])| = |W \W 1|+ |Y | − 1. (4.6)

With the same arguments to prove that (3) is equivalent to |E(G[X ∪ Y ])| = |X ∪ Y | − 1, we
can show that (3) is equivalent to |E(G(W ∪ Y ))| = |W ∪ Y | − 1. By assumption, G[W ∪ Y ] is
connected and thus we conclude that G[W ∪ Y ] is a tree.

We are now ready to decompose A. We start by removing from A all the sets that do not
induce a forest. Trivially, this can be done in time O(|A| · n). Moreover, these sets are R′-
unimportant and thus we keep an (x,R′)acy-representative set of A. Before explaining how we
proceed separately for each parameter, we need the following observation which follows from the
removal of all the sets in A that do not induce a forest.

Observation 4.53. For all X ∈ A, we have −n ≤ |E(G[X])| − |X \X1| < n.

Concerning module-width. We remove all the sets X in A that do not respect Condition (1)
of Lemma 4.49. By Lemma 4.49, these sets are R′-unimportant and thus we keep an (x,R′)acy-
representative set of A. After removing these sets, for each X ∈ A, every pair (a, b) of distinct
vertices in X2+ have a different neighborhood in Vx. Observe that, by definition of module-width,
we have

• mw(Vx) = |{N(v) ∩ Vx : v ∈ Vx}| and

• for every a, b ∈ Vx, if N(a) ∩ Vx = N(b) ∩ Vx, then σ({a}) = σ({b}).

We deduce from these observations that |{σ(X2+) : X ∈ A}| ≤ 2mw(Vx). Thus, the number of
equivalence classes of ∼ over A is at most 2mw(Vx) · 2n ≤ Nmw(T, δ). The factor 2n comes from
Observation 4.53 and appears also in all subsequent upper-bounds.

Concerning mim-width. We remove from A all the sets X such that |X2+| > 2mim(Vx).
By Lemma 4.49, these sets are R′-unimportant and thus we keep an (x,R′)acy-representative
set of A. Observe that this can be done in time O(nmim(Vx)+1 + |A| · n2) because mim(Vx) can
be computed in time O(nmim(Vx) + 1). Since |X2+| ≤ 2mim(Vx), for every X ∈ A, we have
|{σ(X2+) : X ∈ A}| ≤ n2mim(Vx).

Hence, the number of equivalence classes of ∼ over A is at most 2n2mim(Vx)+1 ≤ Nmim(T, δ).
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Concerning rank-width. We remove from A all the sets X such that |X2+| > 2rw(Vx)
because they are R′-unimportant by Lemma 4.49. We know that there are at most 2rw(Vx)

different rows in M . Thus, we have |{σ(X2+) : X ∈ A}| ≤ (2rw(Vx))2rw(Vx).
We can therefore conclude that the number of equivalence classes of ∼ over A is at most

22rw(Vx)2 · 2n ≤ Nrw(T, δ).

Concerning Q-rank-width. We remove all the sets X ∈ A such that |X2+| > 2rwQ(Vx).
By Lemma 4.49, we keep an (x,R′)acy-representative set of A. We claim that |{σ(X2+) : X ∈
A}| ≤ 2rwQ(Vx)·log2(2rwQ(Vx)+1). Notice that the proof can be deduced from [120, Theorem 4.2].

Let C be a set of rwQ(A) linearly independent columns of MA,A. Since the rank over Q of
MVx,Vx

is rwQ(Vx), every linear combination of row vectors of MVx,Vx
is completely determined

by its entries in C. Since |X2+| ≤ 2rwQ(Vx) for every X ∈ A, the values in σ(X2+) are between 0
and 2rwQ(Vx). Hence, the number of possible values for σ(X2+) is at most (2rwQ(Vx)+1)rwQ(Vx).

We conclude that the number of equivalence classes of ∼ over A is at most (2rwQ(Vx) +
1)rwQ(Vx) · 2n ≤ NrwQ(T, δ).

It remains to prove the running time. Observe that, for module-width, (Q-)rank-width and
1-neighbor-width, the removal of R′-unimportant sets can be done in time O(|A| · n2). Indeed,
mw(Vx), rw(Vx) and rwQ(Vx) can be computed in time O(n2). Notice that we can decide whether
X ∼ W in time O(n2). Therefore, for each f ∈ {mw, rw, rwQ,mim}, we can therefore compute
the equivalence classes of A in time O(|A| · Nf(T, δ) · n2).

We are now ready to give an analog of Theorem 4.8 for the (x,R′)acy-representativity.

Theorem 4.54. Let R ∈ R2
Vx

. For each f ∈ {mw, rw, rwQ,mim}, there exists an algorithm
reduceacyf that, given a set A ⊆ 2Vx such that X ≡2

Vx
R for every X ∈ A, outputs in time

O((nec1(Vx)
2(ω−1) +Nf(T, δ)) · |A| ·n2), a subset B ⊆ A such that B (x,R′)acy-represents A and

|B| ≤ Nf(T, δ) · nec1(Vx)
2.

Proof. Let f ∈ {mw, rw, rwQ,mim}. By Lemma 4.52, we can compute in time O(|A|·Nf(T, δ) ·n2)
a collection {A1, . . . ,At} of pairwise disjoint subsets of A such that

• A1 ∪ · · · ∪ At (x,R
′)acy-represents A,

• Ai is R′-consistent for each i ∈ {1, . . . , t},

• t ≤ Nf(T, δ).

For each X ∈ A, we have X ≡1
Vx

R because X ≡2
Vx

R. Since A1, . . . ,At ⊆ A, we can apply
Theorem 4.8 to compute, for each i ∈ {1, . . . , t}, the set Bi := reduce(Ai). By Theorem 4.8, for
each i ∈ {1, . . . , t}, the set Bi is a subset and an (x,R′)-representative set of Ai whose size is
bounded by nec1(Vx)

2. Moreover, as Ai is R′-consistent, we have Bi (x,R
′)acy-represents Ai by

Lemma 4.51.
Let B := B1 ∪ · · · ∪ Bt. Since A1 ∪ · · · ∪ At (x,R′)acy-represents A, we deduce from Fact

4.46 that B (x,R′)acy-represents A. Furthermore, we have |B| ≤ Nf(T, δ) · nec1(Vx)
2 owing to

t ≤ Nf(T, δ) and |Bi| ≤ nec1(Vx)
2 for all i ∈ {1, . . . , t}.

It remains to prove the running time. By Theorem 4.8, we can compute B1, . . . ,Bt in time
O(|A1 ∪ · · · ∪ At| · nec1(Vx)

2(ω−1) · n2). Since the sets A1, . . . ,At are subsets of A and pairwise
disjoint, we have |A1∪· · ·∪At| ≤ |A|. That proves the running time and concludes the theorem.
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We are now ready to present an algorithm that solves any AC-(σ, ρ)-Dominating Set
problem. This algorithm follows the same ideas as the algorithm from Theorem 4.27, except
that we use reduceacyf instead of reduce.

Theorem 4.55. For each f ∈ {mw, rw, rwQ,mim}, there exists an algorithm that, given an n-
vertex graph G and a rooted layout (T, δ) of G, solves any AC-(σ, ρ)-Dominating Set problem,
in time

O(s-necd(T, δ)3 · s-nec1(T, δ)2(ω+1) · Nf(T, δ)
2 · log(s-necd(T, δ)) · n3),

with d := max{2, d(σ), d(ρ)}.
Proof. Let f ∈ {mw, rw, rwQ,mim}. If we want to compute a solution of maximum (resp. mini-
mum) weight, then we use the framework of Section 4.2.2 with opt = max (resp. opt = min).

The first step of our algorithm is to compute, for each x ∈ V (T ), the sets Rd
Vx

, Rd
Vx

and a
data structure to compute repdVx

(X) and repd
Vx
(Y ), for any X ⊆ Vx and any Y ⊆ Vx, in time

O(log(s-necd(T, δ)) ·n2). As T has 2n−1 nodes, by Lemma 4.33, we can compute these sets and
data structures in time O(s-necd(T, δ) · log(s-necd(T, δ)) · n3).

For each node x ∈ T and, for each (R,R′) ∈ Rd
Vx

×Rd
Vx

, we define Ax[R,R′] ⊆ 2Vx as follows

Ax[R,R′] := {X ⊆ Vx : X ≡d
Vx

R and X ∪R′ (σ, ρ)-dominates Vx}.

We deduce the following claim from the proof of Claim 4.41.

Claim 4.55.1. For every internal node x ∈ V (T ) with a and b as children and (R,R′) ∈
Rd

Vx
×Rd

Vx
, we have

Ax[R,R′] =
⋃

(A,A′), (B,B′) d-(R,R′)-compatible

Aa[A,A
′]
⊗

Ab[B,B′].

For each node x of V (T ), our algorithm will compute a table Dx that satisfies the following
invariant.

Invariant. For every (R,R′) ∈ Rd
Vx

×Rd
Vx

, the set Dx[R,R′] is a subset of Ax[R,R′] of size at
most Nf(T, δ) · nec1(Vx)

2 that (x,R′)acy-represents Ax[R,R′].

Notice that by Definition of (x,R′)acy-representativity, if the invariant holds for r, then
Dr[∅,∅] contains a set X of maximum (or minimum) weight such that X is a (σ, ρ)-dominating
set of G and G[X] is a tree.

The algorithm is a usual bottom-up dynamic programming algorithm and computes for each
node x of T the table Dx.

Let x be a leaf of T with Vx = {v}. Observe that Ax[R,R′] ⊆ 2Vx = {∅, {v}}. Thus,
our algorithm can directly compute Ax[R,R′] and set Dx[R,R′] := Ax[R,R′]. In this case, the
invariant trivially holds.

Now, take x an internal node of T with a and b as children such that the invariant holds for a
and b. For each (R,R′) ∈ Rd

Vx
×Rd

Vx
, the algorithm computes Dx[R,R′] := reduceacyf (Bx[R,R′]),

where the set Bx[R,R′] is defined as follows

Bx[R,R′] :=
⋃

(A,A′), (B,B′) d-(R,R′)-compatible

Da[A,A
′]
⊗

Db[B,B′].

Similarly to the proof of Theorem 4.27, we deduce from Fact 4.46, Lemma 4.47, Claim 4.55.1
and Theorem 4.54, that Dx[R,R′] is a subset and an (x,R′)acy-representative set of Ax[R,R′].
By Theorem 4.54, we have |Dx[R,R′]| ≤ Nf(T, δ) · s-nec1(T, δ)2.

Consequently, the invariant holds for x and by induction, it holds for all the nodes of T . The
correctness of the algorithm follows.
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Running Time. The running time of our algorithm is almost the same as the running time
given in Theorem 4.55. The only difference is the factor Nf(T, δ)

2 which is due to the following
fact: by the invariant condition, for each (A,A′) and (B,B′), the size of Da[A,A

′]
⊗

Db[B,B′]
is at most Nf(T, δ)

2 · s-nec1(T, δ)4.

By constructing for any graph G a graph G′ such that the width measure of G′ is linear in
the width measure of G, and any optimum acyclic (σ, ρ)-dominating set of G corresponds to an
optimum AC-(σ, ρ)-dominating set of G′ and vice-versa, we obtain the following which allows
for instance to compute a feedback vertex set in time nO(c), c the mim-width.

Theorem 4.56. For each f ∈ {mw, rw, rwQ,mim}, there exists an algorithm that, given an n-
vertex graph G and a rooted layout (T, δ) of G, solves any Acyclic (σ, ρ)-Dominating Set
problem in time

O(s-necd(T, δ)3 · s-nec1(T, δ)2(ω+1) · Nf(T, δ)
O(1) · n3),

with d := max{2, d(σ), d(ρ)}.

Proof. Let f ∈ {mw, rw, rwQ,mim}. Suppose that we want to compute a maximum acyclic (σ, ρ)-
dominating set. The proof for computing a minimum acyclic (σ, ρ)-dominating set is symmetric.

The first step of this proof is to construct a 2n + 1-vertex graph G′ from G and a layout
(T ⋆, δ⋆) of G′ from (T, δ) in time O(n2) such that (T ⋆, δ⋆) respect the following inequalities:

1. for every d ∈ N+, s-necd(T ⋆, δ⋆) ≤ (d+ 1) · s-necd(T, δ),

2. for every f ∈ {mim,mw, rw, rwQ}, f(T ⋆, δ⋆) ≤ f(T, δ) + 1.

The second step of this proof consists in showing how the algorithm of Theorem 4.55 can
be modified to find a maximum acyclic (σ, ρ)-dominating set of G by running this modified
algorithm on G′ and (T ⋆, δ⋆).

We construct G′ as follows. Let β be a bijection from V (G) to a set V + disjoint from V (G).
The vertex set of G′ is V (G)∪V +∪{v0} with v0 a vertex distinct from those in V (G)∪V +. We
extend the weight function w of G to G′ such that the vertices of V (G) have the same weight
as in G and the weight of the vertices in V + ∪ {v0} is 0. Finally, the edge set of G′ is defined as
follows

E(G′) := E(G) ∪ {{v, β(v)}, {v0, β(v)} : v ∈ V (G)}.

We now construct L = (T ⋆, δ⋆) from L := (T, δ). We obtain T ⋆ and δ⋆ by doing the following
transformations on T and δ:

• For each leaf ℓ of T with δ(ℓ) = {v}, we transform ℓ into an internal node by adding two
new nodes aℓ and bℓ as its children such that δ⋆(aℓ) = v and δ⋆(bℓ) = β(v).

• The root of T ⋆ is a new node r whose children are the root of T and a new node ar with
δ⋆(ar) = v0.

In order to simplify the proof, we use the following notations.
For each node x ∈ V (T ⋆), we let V L

x := V (G′) \ V L
x and, for each node x ∈ V (T ), we let

V L
x := V (G) \ V L

x .
Now, we prove that (T ⋆, δ⋆) respects Inequalities (1) and (2). Let x be a node of T ⋆. Observe

that if x ∈ V (T ⋆) \V (T ), then the set V L
x either contains one vertex or equals V (G′). Hence, in

this case, the inequalities hold because necd(V
L
x ) ≤ d for each d ∈ N+ and f(V L

x ) ≤ 1 for each
f ∈ {mim,mw, rw, rwQ}.
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Now, assume that x is also a node of T . Hence, by construction, we have

V L
x = V L

x ∪ {β(v) : v ∈ V L
x }.

V L
x = V L

x ∪ {β(v) : v ∈ V L
x } ∪ {v0}

Now, we prove Inequality (1). Let d ∈ N+. By construction of G′ and L , for each vertex v ∈ V L
x ,

we have β(v) ∈ V L
x and

NG′(v) ∩ V L
x = NG(v) ∩ V L

x , (4.7)

NG′(β(v)) ∩ V L
x = {v0}. (4.8)

We deduce that, for every X,Y ⊆ V L
x , we have X ≡d

V L
x

Y if and only

• X ∩ V (G) ≡d
V L
x

Y ∩ V (G) and

• min(d, |N(v0) ∩X|) = min(d, |N(v0) ∩ Y |).

Similarly, we deduce that, for every X,Y ⊆ V L
x , we have X ≡d

V L
x

Y if and only if

• X ∩ V (G) ≡d
V L
x

Y ∩ V (G) and

• X ∩ {v0} = Y ∩ {v0}.

Thus, we can conclude that s-necd(V L
x ) ≤ (d + 1) · s-necd(V L

x ). Consequently, Inequality (1)
holds.

We deduce Inequality (2) from Figure 4.3 describing the adjacency matrix between V L
x and

V L
x .

M
V L
x ,V L

x 0

1 00

V L
x

v0 V + ∩ V L
x

V + ∩ V L
x

V L
x

V L
x

V L
x

Figure 4.3: The adjacency matrix between V L
x and V L

x .

Now, we explain how we modify the algorithm of Theorem 4.55 in order to find a maximum
acyclic (σ, ρ)-dominating set of G by calling this algorithm on G′. For doing so, we modify
the definition of the table Ax, the invariant, and the computational steps of the algorithm of
Theorem 4.55. The purpose of these modifications is to restrict the (σ, ρ)-domination to the
vertices of V (G). For doing so, we consider the set of nodes S := V (T ) ∪ {r, ar}. Observe that,
for every node x in S, there are no edges in G[V L

x , V L
x ] between a vertex in V (G) and a vertex

in V (G′) \ V (G). This is not true for the nodes of V (T ⋆) \ S. For this reason, our algorithm
ignores the nodes in V (T ⋆) \ S and computes a table only for the nodes in S.
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For every x ∈ S and every (R,R′) ∈ Rd
V L
x

×Rd

V L
x

we define Ax[R,R′] ⊆ 2V
L
x as follows

Ax[R,R′] := {X ⊆ V L
x : X ≡d

V L
x

R and (X ∪R′) ∩ V (G) (σ, ρ)-dominates V L
x ∩ V (G)}.

We claim that if G admits an acyclic (σ, ρ)-dominating set D, then there exists D′ ∈ Ar[∅,∅]
such that D′ ∩ V (G) = D and G′[D′] is a tree. Let D be an acyclic (σ, ρ)-dominating set of G
with cc(G[D]) = {C1, . . . , Ct}. For each i ∈ {1, . . . , t}, let vi be a vertex in Ci. One easily checks
that G′[D ∪ {β(vi) : 1 ≤ i ≤ t} ∪ v0] is a tree. Moreover, by definition of Ar[∅,∅], for every
X ∈ Ar[∅,∅], if G[X] is a tree, then X∩V (G) is an acyclic (σ, ρ)-dominating set of G. Hence, if
G admits an acyclic (σ, ρ)-dominating set, any (r,∅)acy-representative set of Ar[∅,∅] contains
a set X such that X ∩ V (G) is a maximum acyclic (σ, ρ)-dominating set of G.

For every node x ∈ S, we compute a table Dx satisfying the following invariant.

Invariant. For each node x ∈ S and each (R,R′) ∈ Rd
V L
x

×Rd

V L
x

, the set Dx[R,R′] is a subset

of Ax[R,R′] of size at most Nf(T
⋆, δ⋆) · nec1(V L

x )2 that (x,R′)acy-represents Ax[R,R′].
Before we explain how to compute the table Dx, for each x ∈ S, we need the following fact

and claim. We deduce the following fact from Lemma 4.39 and the fact that, for every node x
in S, there are no edges in G[V L

x , V L
x ] between a vertex in V (G) and a vertex in V (G′) \V (G).

Fact 4.57. Let x ∈ S.
Let X ⊆ V L

x and Y,R′ ⊆ V L
x such that Y ≡d

V L
x

R′. Then (X ∪R′)∩ V (G) (σ, ρ)-dominates

V L
x ∩ V (G) if and only if (X ∪ Y ) ∩ V (G) (σ, ρ)-dominates V L

x ∩ V (G).

We deduce the following claim from Fact 4.57 and Lemma 4.41.

Claim 4.57.1. Let x ∈ S \ {ar} such that x is not a leaf in T . Let a and b be the children of x
in T ⋆. For every (R,R′) ∈ Rd

V L
x

×Rd

V L
x

, we have

Ax[R,R′] =
⋃

(A,A′), (B,B′) d-(R,R′)-compatible

Aa[A,A
′]
⊗

Ab[B,B′].

The algorithm starts by computing the table Dx for each node x ∈ S such that x = ar or x
is a leaf of T . Since |V L

x | ≤ 2, our algorithm directly computes Ax[R,R′] and set Dx[R,R′] :=
Ax[R,R′] for every (R,R′) ∈ Rd

V L
x

×Rd

V L
x

.
For the other nodes our algorithm computes the table Dx exactly as the algorithm of Theorem

4.55.
The correctness of this algorithm follows from Theorem 4.55 and Claim 4.57.1. By Theorem

4.55, the running time of this algorithm is

O(s-nec2(L )3 · s-nec1(L )2(ω+1) · Nf(L )2 · n3).

We deduce the running time in function of L from Inequalities (1) and (2).

4.2.5 Conclusion

We have simplified and generalized the rank-based approach of [9] to work with the d-neighbor-
equivalence relation of [18]. As a result, we provide deterministic algorithms for a wide range of
connectivity problems running in time s-necd(T, δ)O(1) · nO(1) where (T, δ) is a given layout and
d is a constant which depends on the problem. From the upper-bounds presented in Theorem
2.33, we obtain parameterized algorithms with parameters and running times given in Table 4.2.
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We have extended our framework in order to solve any AC-(σ, ρ) Dominating Set problem
and any Acyclic (σ, ρ) Dominating Set problem. This includes well-known problems such
as Maximum Induced Tree, Longest Induced Path, and Maximum Induced Forest.
We obtain algorithms whose running times match those described in Table 4.2. But, even if our
algorithms rely heavily on the d-neighbor-width on the input rooted layout, some specific parts
of the running time analysis use the properties of other parameters. We leave open the following
question.

Open Question 4.58. Does there exists a constant c ∈ N+ and an algorithm, that given an
n-vertex graph G and a rooted layout L of G, finds a maximum induced tree (or a longest induced
path) in time s-necc(T, δ)O(1) · nO(1)?

Concerning mim-width, we provide unified polynomial-time algorithms for the considered
problems and the graph classes of bounded mim-width presented in Section 2.4. Notice that
we also generalize one of the results from [109] proving that the Connected Vertex Cover
problem is solvable in polynomial time for circular arc graphs.

As explained in Section 2.6.2, the algorithmic results we obtain for clique-width are asymp-
totically optimal under the Exponential Time Hypothesis (ETH). However, this is not the case
for the other parameters.

Finally, Fomin et al. [62] have shown that we can use fast computation of representative sets
in matroids to obtain deterministic 2O(k) · nO(1) time algorithms parameterized by tree-width
for many connectivity problems. Let us briefly explain the ideas of [62] (we refer to [37] for an
introduction on matroid and their use in theoretical computer science). Given a matroid M and
a family A of independent sets of size p, we say that A′ ⊆ A q-represents A if for every set B
of size q, if there exists A ∈ A such that A ∪ B is an independent set of M, then there exits
A′ ∈ A′ such that A′ ∪B is also an independent set. Fomin et al. proved the following theorem
on the computation of q-representative sets.

Theorem 4.59 ([62]). Let M be a linear matroid of rank p+q = k given with its representation
matrix AM over a field F. Given a set A of independent sets of size p, we can compute a q-
representative set B ⊆ A of A with |B| ≤

(
p+q
p

)
in O(

(
p+q
p

)
· |A| · pω + |A| ·

(
p+q
p

)ω−1
) operations

over F.

Fomin et al. used this theorem in [62] to design efficient parameterized algorithms and in
particular 2O(tw(G)) · n time algorithms for Steiner Tree. Is this approach also generalizable
to d-neighbor-width? Can it be of any help for answering Question 2.59?

4.3 Cut & Count Approach on Graphs with Structured Neigh-
borhood

In this section, we combine the Cut & Count approach of [38] with the d-neighborhood equiva-
lence relation (defined in Section 1.3). We obtain a one-sided error Monte Carlo algorithm with
false negatives7 that, given a graph G and an integer k, decides whether G admits a connected
(σ, ρ)-dominating set of size k in time O(s-necd(L)O(1) · nO(1)) with L a given rooted layout.

Let us explain, briefly, the Cut & Count approach with a concrete example: the unweighted
decision variant of Node-Weighted Steiner Tree. Let G be a graph and K ⊆ V (G) be a
set of terminals. We want to decide if G admits a solution of size k for some k ∈ [n]. In this case,

7An algorithm for decision problems that is always correct when it outputs yes.
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a solution is a set X ⊆ V (G) such that K ⊆ X and G[X] is connected. For doing so, the Cut &
Count approach reduces this decision problem to its counting modulo 2 variant, i.e., finds the
parity of the number of solutions of size k. A priori, this variant does not seem easier to solve,
but working modulo 2 allows to use cancellation tricks. Let us explain this reduction and how
we solve this counting modulo 2 variant.

The reduction. The idea behind the reduction is to assign to each vertex v of G a weight
w(v) ∈ [N ] uniformly and independently at random for some integer N ∈ N. Intuitively, if N is
large, then there is a good probability p that there exists W ∈ [k · N ] such that there exists a
unique solution X of size k and weight W ; this implies that the number of solutions of size k
and weight W is odd. In fact, setting N = 2n is enough to have p ≥ 1/2 (see Lemma 4.60).

Counting modulo 2 variant. Given the weight function w from the reduction, what we have
to do now is to compute, for each W ∈ {1, . . . , n ·N}, the parity of the set SW of solutions of
size k and weight W . In order to compute the parity of SW , we proceed into two parts:

• The Cut part: relax the connectivity constraint and consider the set RW of possibly discon-
nected candidate solutions, that is consider the set RW := {X ⊆ V (G) : |X| = k, w(X) =
W and K ⊆ X}. Furthermore, fix a vertex in v0 ∈ K and consider the set CW of all pairs
(X, (X1, X2)) where X ∈ R and (X1, X2) is a consistent cut8 of X with v0 ∈ X1.

• The Count part: prove that CW and SW have the same parity and compute the parity
of CW on a rooted layout by a dynamic programming algorithm (in [38] they do it on a
tree-decomposition in time 2O(tw(G)) · nO(1)). In this case, proving that CW and SW have
the same parity is not hard. Indeed, for every X ∈ RW , the number of consistent cuts
C of X such that (X,C) ∈ CW equals 2|cc(G[X])|−1 since every connected component of
G[X] can be in both sides of a consistent cut at the exception of the connected component
containing v0. Hence, the number of consistent cuts C of X such that (X,C) ∈ CW is odd
if and only if X ∈ SW .

In the following, we will prove that, given an n-vertex graph G with a rooted layout L and
k ∈ N, we can use this approach to design a Monte Carlo algorithm to decide whether G admits a
connected (σ, ρ)-dominating set of size k in time s-necd(L)O(1) ·nO(1) with d = max{1, d(σ), d(ρ)}.
We will only consider connected (σ, ρ)-dominating sets but, by using the same ideas of Section
4.2, the same algorithm works for deciding whether a graph has a connected co-(σ, ρ)-dominating
set of size k or for the unweighted decision variant of Node-Weighted Steiner Tree.

Let G be an n-vertex graph, k ∈ N, and let (T, δ) be a fixed rooted layout of G with the
root of T denoted by r. Moreover, let (σ, ρ) be a pair of non-empty finite or co-finite subsets
of N and let d := max{1, d(σ), d(ρ)}. To use the modulo 2 cancellation trick, we need to guess
one vertex v0 ∈ V (G) that belongs to a solution of size k. We can do this by going through the
n possibilities. Let v0 be a fixed vertex in V (G). In the following, we explain how to design a
Monte Carlo algorithm that decides whether G admits a connected (σ, ρ)-dominating set of size
k that contains v0.

As in [38], we use the Isolation Lemma from [111] for the reduction.

Lemma 4.60 ([111]). Let S ⊆ 2U be a set family over a universe U with |S| > 1. For each
u ∈ U , choose a weight w(u) ∈ {1, . . . , N} uniformly and independently at random. Then, the
probability that there exists a unique S ∈ S with w(S) = minS′∈Sw(S

′) is at least 1− |U |
N .

8Defined in Subsection 4.2.1.
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To use this lemma, we choose, for each vertex v of G, a weight w(v) ∈ {1, . . . , 2n} uniformly at
random. Then we consider, for each W ∈ [2n2], the set Sv0,W of all connected (σ, ρ)-dominating
sets of size k and weight W that contains v0. By Lemma 4.60, if there exists a connected (σ, ρ)-
dominating set of size k that contains v0, then the probability that there exists W ∈ [2n2] such
that |Sv0,W | is odd is at least 1

2 . Consequently, from an algorithm that computes the parity of
|Sv0,W | for each W , one can design a one sided Monte Carlo algorithm that decides whether G
admits a connected (σ, ρ)-dominating set of size k that contains v0. This Monte Carlo algorithm
checks whether there exists W such that |Sv0,W | is odd, if such W exists, then it returns yes,
otherwise, it returns no. This algorithm cannot give false positives and may give false negatives
with probability at most 1/2.

In the following, we explain how we compute, for each W , the parity of |Sv0,W |. For all
W ∈ [2n · k], we consider Rv0,W ⊇ Sv0,W the set of all the (σ, ρ) dominating sets of cardinality
k and weight W that contain v0. Moreover, we consider also

Cv0,W :={(X, (X1, X2)) ∈ Rv0,W × cuts(X) : v0 ∈ X1}.

By Fact 4.30, for every X ∈ Rv0,W , the number of consistent cuts C of X such that (X,C) ∈
Cv0,W is 2|cc(G[X])|−1. Consequently, we have the following fact.

Fact 4.61. For every W , |Cv0,W | and |Sv0,W | have the same parity.

Hence, if |Cv0,W | is odd for some W , we can confirm that G admits a connected (σ, ρ)-
dominating set of cardinality k.

We now explain how to compute |Cv0,W | by a bottom-up dynamic programming algorithm
on (T, δ). At each node x of T , we compute a table #Ax,v0 whose set of indices, denoted by Ix,
is Ix := Rd

Vx
×Rd

Vx
×R1

Vx
×R1

Vx
× [k]× [2n ·k]. For each I ∈ Ix, the entry #Ax,v0 [I] corresponds

to the cardinality of the set Ax,v0 [I] whose definition is the following.

Definition 4.62. Let x ∈ V (T ), for all (R,R′, R1, R2, i,W ) ∈ Ix.
We define Ax,v0 [R,R′, R1, R2, i,W ] as the set of all (X, (X1, X2)) ∈ 2Vx × cuts(X) satisfying

the following conditions:

1. |X| = i and w(X) = W ,

2. X ≡d
Vx

R,

3. if v0 ∈ Vx, then v0 ∈ X1,

4. (X ∪R′) (σ, ρ)-dominates Vx,

5. X1 ≡1
Vx

R1 and X2 ≡1
Vx

R2.

It is straightforward to check that, for every W ∈ [2n · k], we have #Ar[∅,∅,∅,∅, k,W ] =
|Cv0,W |. Let us explain how we compute the entries of #Ax,v0 .

Computing #Ax,v0 when x is an internal node of T with children a, b. We start by
defining a notion of compatibility between the indices in Ix, Ia and Ib.

Definition 4.63. Let Ix = (R,R′, R1, R2, i,W ) ∈ Ix. For Ia = (A,A′, A1, A2, ia,Wa) ∈ Ia and
Ib = (B,B′, B1, B2, ib,Wb) ∈ Ib, we say that (Ia, Ib) is Ix-compatible if

(a) W = Wa +Wb and i = ia + ib,
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(b) R ≡d
Vx

A ∪B,

(c) A′ ≡d
Va

R′ ∪B′ and B′ ≡d
Vb

R′ ∪A′,

(d) A1 ∪B1 ≡1
Vx

R1 and A2 ∪B2 ≡1
Vx

R2,

(e) N(A1) ∩B2 = ∅ and N(A2) ∩B1 = ∅.

The following lemma provides an equality between the entries of #Ax,v0 and those of #Aa,v0

and #Ab,v0 .

Lemma 4.64. For all Ix = (R,R′, R1, R2, i, w) ∈ Ix, we have

#Ax,v0
[Ix] =

∑
(Ia, Ib) is Ix-compatible

#Aa,v0
[Ia] ·#Ab,v0

[Ib]

Proof. This lemma is implied by the following two claims.

Claim 4.64.1. Let Ix = (R,R′, R1, R2, i, w) ∈ Ix, Ia = (A,A′, A1, A2, ia,Wa) ∈ Ia and Ib =
(B,B′, B1, B2, ib,Wb) ∈ Ib such that (Ia, Ib) is Ix-compatible. For all (X, (X1, X2)) ∈ Aa,v0 [Ia]
and (Y, (Y1, Y2)) ∈ Ab,v0 [Ib], we have (X ∪ Y, (X1 ∪ Y1, X2 ∪ Y2)) ∈ Ax,v0 [Ix].

Proof. Let (X, (X1, X2)) ∈ Aa,v0 [Ia] and (Y, (Y1, Y2)) ∈ Ab,v0 [Ib]. We start by proving that
(X ∪ Y, (X1 ∪ Y1, X2 ∪ Y2)) checks all Conditions (1)-(5) of Definition 4.62. For doing so, we use
Conditions (a)-(e) of Definition 4.63.

First, observe that thanks to Fact 4.32 and the facts that V (G) = Va ⊎Vb ⊎Vx, we have (e1)
X ≡d

Vx
A, (e2) Y ≡d

Vx
B, (e3) Y ≡d

Va
B, (e4) X1 ≡1

Vx
A1, and (e5) Y1 ≡1

Vx
B1.

Condition (1) is trivially satisfied since we have, by Condition (a), |X| + |Y | = ia + ib = i
and w(X) + w(Y ) = Wa +Wb = W = w(X ∪ Y ).

Condition (2) is also satisfied. Indeed, from Condition (b), we have R ≡d
Vx

A∪B. Hence, we
deduce from (e1) and (e2) that X ∪ Y ≡d

Vx
R, i.e., Condition (2) is satisfied.

Condition (3) is due to the fact that if v0 ∈ Vx, then either v0 ∈ Va or v0 ∈ Vb. Thus, in both
cases, we have v0 ∈ X1 ∪ Y1 by definition of Aa,v0 [Ia] and Ab,v0 [Ib].

In order to prove that Condition (4) is satisfied, we have to prove that X ∪ Y ∪ R′ (σ, ρ)-
dominates Vx. Thanks to Condition (c), we have A′ ≡d

Va
R′ ∪ B. We deduce from (e3) that

A′ ≡d
Va

R′ ∪ Y . As (X, (X1, X2)) ∈ Aa,v0 [Ia], we have X ∪A′ (σ, ρ)-dominates Va. Since A′ ≡d
Va

R′ ∪ Y , by Lemma 4.39, we conclude that X ∪ Y ∪ R′ (σ, ρ)-dominates Va. Symmetrically, we
can prove that X ∪ Y ∪R′ (σ, ρ)-dominates Vb. Consequently, X ∪ Y ∪R′ (σ, ρ)-dominates Vx,
i.e., Condition (4) is satisfied.

In order to prove Condition (5), we have to prove that X1∪Y1 ≡1
Vx

R1 and X2∪Y2 ≡1
Vx

R2. By
Condition (d), we have A1 ∪B1 ≡1

Vx
. From (e4) and (e5), we can conclude that X1 ∪Y1 ≡1

Vx
R1.

Symmetrically, we can prove that X2 ∪ Y2 ≡1
Vx

R2 and thus Condition (5) is satisfied.

It remains to prove (X1∪Y1, X2∪Y2) ∈ cuts(X ∪Y ). By definition of Aa,v0 [Ia] and Ab,v0 [Ib],
we have (X1, X2) ∈ cuts(X) and (Y1, Y2) ∈ cuts(Y ). Thus, by Fact 4.31, in order to prove
that (X1 ∪ Y1, X2 ∪ Y2) ∈ cuts(X ∪ Y ), it is sufficient to prove that N(X1) ∩ Y2 = ∅ and
N(X2)∩Y1 = ∅. We know that X1 ≡1

Va
A1 and thus N(X1)∩Va = N(A1)∩Va. Symmetrically,

we have N(Y2)∩Vb = N(B2)∩Vb. By Condition (e), we have N(A1)∩B2 = ∅. Since B2 ⊆ Va and
X1 ⊆ Vb, we conclude that N(A1) ∩B2 = N(X1) ∩ Y2 = ∅. It follows that (X1 ∪ Y1, X2 ∪ Y2) ∈
cuts(X ∪ Y ).
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Claim 4.64.2. Let Ix ∈ Ix and (X, (X1, X2)) ∈ Ax,v0 [Ix]. There exist an unique Ia ∈ Ia and an
unique Ib ∈ Ib such that (Ia, Ib) is Ix-compatible and for all i ∈ {a, b}, we have

(X ∩ Vi, (X1 ∩ Vi, X2 ∩ Vi)) ∈ Ai[Ii]

Proof. Let Ia := (A,A′, A1, A2, ia,Wa) ∈ Ia such that:

• ia = |X ∩ Va|, Wa = w(X ∩ Va),

• A = repdVa
(X ∩ Va), A′ = repd

Va
(R′ ∪X ∩ Vb),

• A1 = rep1Va
(X1 ∩ Va), and A2 = rep1Va

(X2 ∩ Va).

We claim that (X ∩ Va, (X1 ∩ Va, X2 ∩ Va)) ∈ Aa,v0 [Ia].
By Fact 4.31, (X1, X2) ∈ cuts(X) implies that (X1 ∩ Va, X2 ∩ Va) ∈ cuts(X ∩ Va).
By construction of Ia, (X∩Va, (X1∩Va, X2∩Va)) satisfies Conditions (1), (2), (5) of Definition

4.62 w.r.t. Aa,v0 [Ia].
Since (X, (X1, X2)) ∈ Ax,v0 [Ix], if v0 ∈ Va, then v0 ∈ Vx and we have v0 ∈ X1 ∩ Va, that is

Condition (3) is satisfied.
It remains to prove Condition (4), i.e., (X∩Va)∪A′ (σ, ρ)-dominates Va. We know that X∪R′

(σ, ρ)-dominates Vx. By construction, we have A′ ≡d
Va

R′∪X∩Vb. Thus, by Lemma 4.39, we have
(X ∩Va)∪A′ (σ, ρ)-dominates Va. We can conclude that (X ∩Va, (X1∩Va, X2∩Va)) ∈ Aa,v0 [Ia].

By Definition 4.62, it is straightforward to check that Ia is the only index of Ia such that (X∩
Va, (X1∩Va, X2∩Va)) ∈ Aa,v0 [Ia]. Symmetrically, we can construct Ib := (B,B′, B1, B2, ib, wb) ∈
Ib such that Ib is the unique element of Ib so that (X ∩ Vb, (X1 ∩ Vb, X2 ∩ Vb)) ∈ Ab,v0 [Ib].

It remains to prove that (Ia, Ib) is Ix-compatible. By the definitions of Ia and Ib, Conditions
(a) and (c) are satisfied. Now, we prove Condition (b), i.e., A∪B ≡d

Vx
X. By construction of Ia,

we have A ≡d
Va

X∩Va. Since Va ⊆ Vx, by Fact 4.32, we deduce that A ≡d
Vx

X∩Va. Symmetrically,
we can prove that B ≡d

Vx
X ∩ Vb. We can conclude that A ∪ B ≡d

Vx
X, i.e., Condition (b) is

satisfied. With the same arguments, we can prove that Condition (d) is also satisfied.
It remains to prove Condition (e), i.e., N(A1)∩B2 = ∅ and N(A2)∩B1 = ∅. By symmetry,

it is enough to prove that N(A1) ∩ B2 = ∅. Since (X1, X2) ∈ cuts(X), we know that X1 ∩
N(X2) = ∅ and in particular X1 ∩ Va ∩ N(X2 ∩ Vb) = ∅. As A1 ≡1

Va
X1 ∩ Va, we have

N(A1) ∩ Va = N(X1 ∩ Va) ∩ Va. Symmetrically, we have N(B2) ∩ Vb = N(X2 ∩ Vb) ∩ Vb. Thus,
since A1 ⊆ Vb and B2 ⊆ Va, we can conclude that N(X1∩Va)∩(X2∩Vb) = N(A1)∩B2 = ∅.

We are now ready to prove the main theorem of this section.

Theorem 4.65. There exists a Monte-Carlo algorithm that, given an n-vertex graph G, a rooted
layout (T, δ) of G and k ∈ [k], decides whether G admits a connected (σ, ρ)-dominating of size k
in time O(s-necd(T, δ)3 · s-nec1(T, δ)4 ·k2 ·n4) with d = max{1, d(σ), d(ρ)}. The algorithm cannot
give false positives and may give false negatives with probability at most 1/2.

Proof. The first step of our algorithm is to compute, for each x ∈ V (T ), the sets Rd
Vx

, R1
Vx

, Rd
Vx

,
R1

Vx
and a data structure to compute repdVx

(X), rep1Vx
, repd

Vx
(X), and rep1

Vx
for each X ⊆ Vx in

time O(log(s-necd(T, δ)) · n2). As T has 2n − 1 nodes, by Lemma 4.33, we can compute these
sets and data structures in time O(s-necd(T, δ) · log(s-necd(T, δ)) · n3).

Then our algorithm choose, for each vertex v of G, a weight w(v) ∈ {1, . . . , 2n} uniformly
at random. For every choice of vertex v0, our algorithm do the following. We do a bottom-up

127



traversal of T and at each node we compute #Ax,v0 [Ix] for each Ix ∈ Ix. For the leaves of T ,
we can directly compute Ax,v0 [Ix] and #Ax,v0 [Ix] = |Ax,v0 [Ix]| for each Ix ∈ Ix. When x is an
internal node of T with children a and b, we can compute the entries of #Ax,v0 by doing the
following:

• initialize each entry of #Ax,v0 to 0,

• for each (Ix, Ia, Ib) ∈ Ix× Ia× Ib, such that (Ia, Ib) is Ix-compatible, update #Ax,v0 [Ix] :=
(#Aa,v0 [Ia] ·#Ab,v0 [Ib]) + #Ax,v0 [Ix].

We claim that we can compute the entries of #Ax,v0 in time O(s-necd(T, δ)3 ·s-nec1(T, δ)4 ·k4 ·n2).
In order to prove that it is sufficient to prove that there are at most N := s-necd(T, δ)3 ·
s-nec1(T, δ)4 · k4 ·n2 tuples (Ix, Ia, Ib) such that (Ia, Ib) is Ix-compatible and that we enumerate
these N tuples in time O(N). First, observe that, for every (A,B,R′) ∈ Rd

Va
×Rd

Vb
×Rd

Vx
, there

is only one tuple (A′, B′, R) ∈ Rd
Va

×Rd
Vb

×Rd
Vx

such that Conditions (b) and (c) of Definition
4.63 are satisfied (see the proof of Theorem 4.42). Moreover, for (A1, A2) ∈ R1

Va
× R1

Va
and

(B1, B2) ∈ R1
Vb

×R1
Vb

, there exists only one (R1, R2) ∈ R1
Vx

×R1
Vx

such that Condition (d) of
Definition 4.63 is satisfied. It follows that there are at most N tuples (Ix, Ia, Ib) such that (Ia, Ib)
is Ix-compatible and it is easy to check that we can enumerate these N tuples in time O(N).

Assume now that #Ax,v0 has been computed for every x ∈ V (T ) and every v0 ∈ V (G). If
for every v0 and W ∈ [2n · k], #Ar,v0 [∅,∅,∅,∅, k,W ] is even with r the root of T , then our
algorithm returns no, otherwise it returns yes.

We claim that the algorithm we have presented is a Monte Carlo algorithm that decides
whether G admits a connected (σ, ρ)-dominating set of size k. Moreover, by Lemma 4.60, this
algorithm cannot give false positives and may give false negatives with probability at most 1

2 .
Assume that G admits a (σ, ρ)-dominating set X of size k. Let v0 be a vertex of X. Thus,

we have
⋃

W∈[2n·k] Sv0,W ̸= ∅. By construction of w and Lemma 4.60, the probability that there
exists W ∈ [2n · k] such that |Sv0,W | is odd is at least 1

2 . Moreover, by Definition 4.62, for each
W ∈ [2n · k], we have Cv0,W = Ar,v0 [∅,∅,∅,∅, k,W ]. Furthermore, by Fact 4.61, |Sv0,W | and
|Cv0,W | have the same parity for every W ∈ [2n · k]. Consequently, the probability that our
algorithm returns yes is at least 1

2 . On the other hand, if G does not admit a (σ, ρ)-dominating
set X of size k, then Sv0,W = ∅ for every v0 ∈ V (G) and W ∈ [2n ·k]. In this case, our algorithm
always returns no. Since T has 2n−1 nodes, we conclude that the running time of this algorithm
is O(s-necd(T, δ)3 · s-nec1(T, δ)4 · k4 · n4).

4.4 An Optimal XP Algorithm for Hamiltonian Cycle parame-
terized by Clique-width

In this section, we prove that there exists an algorithm solving Hamiltonian Cycle in time
nO(k), when a clique-width k-expression is given. Specifically, we prove the following.

Theorem 4.66. There exists an algorithm that, given an n-vertex graph G and a k-expression
of G, solves Hamiltonian Cycle in time O(n2k+5 · 22k(log2(k)+1) · k3 log2(nk)).

Our algorithm is a dynamic programming one whose steps are based on the k-labeled graphs
H arising in the k-expression of G. Observe that the edges of a Hamiltonian cycle of G which
belong to E(H) induce either a Hamiltonian cycle or a collection of vertex-disjoint paths in G
covering H. Consequently, we define a partial solution as a set of edges of H which induces a
collection of paths (potentially empty) covering H. As in [49], with each partial solution P, we

128



associate an auxiliary multigraph such that its vertices correspond to the labels of H and each
edge {i, j} corresponds to a maximal path induced by P with end-vertices labeled i and j.

Since H is a k-labeled graph arising in a k-expression of G, we have that two vertices x and
y with the same label in H have the same neighborhood in G − E(H) (the graph G without
the edges of H). It follows that the endpoints of a path in a partial solution are not important
and what matters are the labels of these endpoints. As a result, two partial solutions with the
same auxiliary multigraph are equivalent, i.e., if one is contained in a Hamiltonian cycle, then
the other also. From these observations, one easily deduces the nO(k2)-time algorithm, due to
Espelage, Gurski, and Wanke [49], because there are at most n possible paths between two label
classes and thus there are at most nO(k2) possible auxiliary graphs.

To obtain our nO(k)-time algorithm, we refine the above equivalence relation. We define
that two partial solutions are equivalent if their auxiliary graphs have the same connected
components, and the paths they induce have the same number of endpoints labeled i, for all
labels i. The motivation is the following. When we have a partial solution P and a set of edges
Q ⊆ E(G) \ E(H) so that P ∪ Q forms a Hamiltonian cycle, we consider to make an auxiliary
graph of Q, and we identify with the one for P. To distinguish edges obtained from P or Q, we
color edges by red if one comes from P and by blue otherwise. Then following the Hamiltonian
cycle, we can find an Eulerian trail of this merged auxiliary graph that uses edges of distinct
colors alternately. But then if P ′ is equivalent to P, then one can observe that if we replace
the red part with the auxiliary graph of P ′, then it also has such an Eulerian trail, and we can
show that P ′ can also be completed into a Hamiltonian cycle. So, in the algorithm, for each
equivalence class, we store one partial solution. We define this equivalence relation formally in
Section 4.4.2.

Since, the number of partitions of a k-size set is at most kk and the number of paths induced
by a partial solution is always bounded by n, the number of non-equivalent partial solutions
is then bounded by (2n)k · kk (the maximum degree of an auxiliary multigraph is at most 2n
because a loop is counted as two edges). The running time of our algorithm follows from the
maximum number of non-equivalent partial solutions. The main effort in the algorithm consists
then in updating the equivalence classes of this equivalence relation in terms of operations based
on the clique-width operations.

In Subsection 4.4.1, we give basic definitions and notations concerning multigraphs. Our no-
tions of partial solutions and of auxiliary multigraphs are given in Subsection 4.4.2. In Subsection
4.4.3, we prove the equivalence between the existence of Hamiltonian cycles in the input graph
and the existence of red-blue alternating Eulerian trails in auxiliary multigraphs, and deduce
that it is enough to store (2n)k · kk partial solutions at each step of our dynamic programming
algorithm. In Subsection 4.4.4, we show how to obtain from the results of Subsection 4.4.3 an
nO(k)-time algorithm for Hamiltonian Cycle. In Subsection 4.4.5, we give some intuitions
for solving in time nO(k) the problems Directed Hamiltonian Cycle given a k-expression.
We conclude this section by some open question concerning a generalization of Hamiltonian
Cycle.

4.4.1 Preliminaries

A multigraph is essentially a graph, but we allow multiple edges, i.e., edges incident with the
same set of vertices. Formally, a multigraph G is a pair (V (G), E(G)) of disjoint sets, also called
sets of vertices and edges, respectively, together with a map multG : E(G) → V (G) ∪ [V (G)]2,
which maps every edge to one or two vertices, still called its endpoints. The degree of a vertex x
in a multigraph G, is defined analogously as in graphs, except that each loop is counted twice,
and similarly for other notions. If there are exactly k edges e such that multG(e) = {x, y} (or
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multG(e) = {x}), then we denote these distinct edges by {x, y}1, . . . , {x, y}k (or {x}1, . . . , {x}k).
For two multigraphs G and H on the same vertex set {v1, . . . , vk} and with disjoint edge

sets, we denote by G ⊎H the multigraph with vertex set {v1, . . . , vk}, edge set E(G) ∪ E(H),
and

multG⊎H(e) :=

{
multG(e) if e ∈ E(G),

multH(e) otherwise.

If the edges of G and H are colored, then this operation preserves the colors of the edges.

We use the notations introduced for graphs in Section 1.2 concerning walks and trails. An
Eulerian trail in a graph is a closed trail containing all edges. When the edges of a multigraph
are colored in red or blue, we say that a walk W = (v1, e1, . . . , vr−1, er−1, vr) is a red-blue walk, if
for every i ∈ {1, . . . , r− 2}, the colors of ei and ei+1 are different and if the walk is closed, then
the colors of e1 and er−1 are different. In particular, if the edges of a multigraph are colored red
or blue, then a red-blue Eulerian trail is an Eulerian trail that is a red-blue walk. For two walks
W1 = (v1, e1, . . . , eℓ−1, vℓ) and W2 = (v′1, e

′
1, . . . , e

′
r−1, v

′
r) such that vℓ = v′1, the concatenation

of W1 and W2, denoted by W1 −W2, is the walk (v1, e1, . . . , eℓ−1, vℓ, e
′
1, . . . , e

′
r−1, v

′
r).

4.4.2 Partial solutions and auxiliary graphs

Let G be a graph and (H, labH) be a k-labeled graph such that H is a subgraph of G.
A partial solution of H is a set of edges P ⊆ E(H) such that H|P is a union of vertex-disjoint

paths, i.e., H|P is acyclic and, for every vertex v ∈ V (H), the degree of v in H|P is at most
two. We denote by Π(H) the set of all partial solutions of H. We say that a path P in H|P
is maximal if the degree of its end-vertices in H|P is at most one; in other words, there are no
paths P ′ in H|P such that V (P ) ⊊ V (P ′). Observe that an isolated vertex in H|P is considered
as a maximal path.

A complement solution of H is a subset Q of E(G)\E(H) such that G|Q is a union of vertex-
disjoint paths with end-vertices in V (H); in particular, for every vertex v in V (G) \ V (H), the
degree of v in G|Q is two. We denote by Π(H) the set of all complement solutions of H. A path
P in G with at least 2 vertices is an H-path if the end-vertices of P are in V (H) and the internal
vertices of P are in V (G) \ V (H). By definition, isolated vertices in V (H) are not H-paths.
Observe that, for a complement solution Q, we can decompose each maximal path Q of G|Q
with at least 2 vertices into H-paths (not necessarily one).

Examples of a partial solution and a complement solution are given in Figure 4.4. Note that
if G has a Hamiltonian cycle C and E(C) ̸⊆ E(G), then E(C) ∩ E(H) is a partial solution
and E(C) ∩ (E(G) \ E(H)) is a complement solution. We say that a partial solution P and a
complement solution Q form a Hamiltonian cycle if (V (G),P ∪ Q) is a cycle containing all the
vertices of G.

Auxiliary Multigraph. For P ∈ Π(H) ∪Π(H) and i, j ∈ [k], we define ℓij and ℓi as follows.

• If P is a partial solution of H, then ℓij is the number of maximal paths in H|P with
end-vertices labeled i and j, and ℓi is the number of maximal paths in H|P with both
end-vertices labeled i.

• If P is a complement solution of H, then ℓij is the number of H-paths in G|P with end-
vertices labeled i and j, and ℓi is the number of H-paths in G|P with both end-vertices
labeled i.
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H

lab−1
H (1) lab−1

H (2) lab−1
H (3) lab−1

H (4) lab−1
H (5)

Figure 4.4: Examples of a partial solution P (solid lines) and a complement solution Q (dashed
lines) forming a Hamiltonian cycle. Observe that H|P contains 5 maximal paths and G|Q contains
5 H-paths (and only 4 maximal paths).

Now, we define the auxiliary multigraph of P, denoted by auxH(P), as the multigraph with
vertex set {v1, . . . , vk} and edge set⋃

i,j∈[k]
i ̸=j

{{vi, vj}1, . . . , {vi, vj}ℓij} ∪
⋃
i∈[k]

{{vi}1, . . . , {vi}ℓi}.

Moreover, if P is a partial solution of H, then we color all the edges of auxH(P) in red, and
if P is a complement solution, then we color the edges of auxH(P) in blue. An example of an
auxiliary multigraph is given in Figure 4.5.

v1 v2 v3 v4 v5

Figure 4.5: The union G1 ⊎G2 of auxiliary multigraphs G1 and G2 associated with the partial
solution (solid lines) and the complement solution (dashed lines) represented in Figure 4.4.

4.4.3 Relations between Hamiltonian cycles and Eulerian trails

Let G be an n-vertex graph and ϕ be an irredundant k-expression of G. Let H be a k-labeled
graph arising in the k-expression ϕ. Observe that H is a subgraph of G (disregarding the labels).
This section is dedicated to prove the properties of the following relation between partial solutions
of H based on the degree sequence and the connected components of their auxiliary multigraphs.

Definition 4.67. Let P1,P2 ∈ Π(H). We write P1 ≃ P2 if auxH(P1) and auxH(P2) have
the same set of connected components and for each vertex v in {v1, . . . , vk}, degauxH(P1)(v) =
degauxH(P2)(v).

Observe that ≃ is an equivalence relation. For a set A ⊆ Π(H), we define reduceH(A) as the
operation which returns a set containing one element of each equivalence class of A/ ≃.
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The main idea of our algorithm is to call reduceH at each step of our dynamic programming
algorithm in order to keep the size of a set of partial solutions manipulated small, i.e., bounded
by nO(k). The running time of our algorithm follows mostly from the following lemma.

Lemma 4.68. For every A ⊆ Π(H), we have |reduceH(A)| ≤ nk · 2k(log2(k)+1) and we can
moreover compute reduceH(A) in time O(|A| · nk2 log2(nk)).

Proof. To prove that reduceH(A) ≤ nk · 2k(log2(k)+1) , it is enough to bound the number of
equivalence classes of Π(H)/ ≃.

We claim that, for every P ∈ Π(H), we have
∑

i∈[k] degauxH(P)(vi) ≤ 2|V (H)|. First observe
that

∑
i∈[k] degauxH(P)(vi) = 2|V (H)| when P = ∅, since each isolated vertex in H|P gives a loop

in auxH(P). Moreover, when P contains an edge, removing an edge from a partial solution P of
H increases

∑
i∈[k] degauxH(P)(vi) by two; indeed, this edge removal splits a maximal path of H|P

into two maximal paths. Therefore, any partial solution P satisfies that
∑

i∈[k] degauxH(P)(vi) ≤
2|V (H)|; in particular each vertex of auxH(P) has degree at most 2|V (H)|. As auxH(P) contains
k vertices, we deduce that there are at most (2|V (H)|)k ≤ (2n)k possible degree sequences for
auxH(P).

Since the number of partitions of {v1, . . . , vk} is bounded by 2k log2 k. We conclude that ≃
partitions Π(H) into at most nk · 2k(log2 k+1) equivalences classes.

It remains to prove that we can compute reduceH(A) in time O(|A| · nk log2(nk)). First
observe that, for every P ∈ Π(H), we can compute auxH(P) in time O(nk). Moreover, we can
also compute the degree sequence of auxH(P) and the connected components of auxH(P) in
time O(nk). Thus, by using the right data structures, we can decide whether P1 ≃ P2 in time
O(nk). Furthermore, by using a self-balancing binary search tree, we can compute reduceH(A)
in time O(|A| ·nk log2(|reduceH(A)|)). Since log2(|reduceH(A)|) ≤ k log2(2nk), we conclude that
reduceH(A) is computable in time O(|A| · nk2 log2(nk)).

The rest of this section is dedicated to prove that, for a set of partial solutions A of H, the
set reduceH(A) is equivalent to A, i.e., if A contains a partial solution that forms a Hamiltonian
cycle with a complement solution, then reduceH(A) also. Our results are based on a kind of
equivalence between Hamiltonian cycles and red-blue Eulerian trails. The following observation
is one direction of this equivalence.

Lemma 4.69. If P ∈ Π(H) and Q ∈ Π(H) form a Hamiltonian cycle, then the multigraph
auxH(P) ⊎ auxH(Q) admits a red-blue Eulerian trail.

Proof. Suppose that P ∈ Π(H) and Q ∈ Π(H) form a Hamiltonian cycle C. Let M := auxH(P)⊎
auxH(Q). From the definitions of a partial solution and of a complement solution, there is a
sequence (P1, Q1, . . . , Pℓ, Qℓ) of paths in P and Q such that

• P1, P2, . . . , Pℓ are all the maximal paths in H|P ,

• Q1, Q2, . . . , Qℓ are all the H-paths in G|Q,

• P1, Q1, . . . , Pℓ, Qℓ appear in C in this order,

• for each x ∈ [ℓ], the first end-vertices of Px is the last end-vertex of Qx−1 and the last
end-vertex of Px is the first end-vertex of Qx (indices are considered modulo ℓ).

Observe that each maximal path Px in H|P with end-vertices labeled i and j is associated
with a red edge in M , say ex with multM (ex) = {vi, vj} if i ̸= j or multM (ex) = {vi} if i = j
such that the edges e1, . . . , eℓ are pairwise distinct and E(auxH(P)) = {e1, . . . , eℓ}. Similarly,
each H-path Qy of G|Q with end-vertices labeled i and j is associated with a blue edge fy in M

132



with multM (fy) = {vi, vj} if i ̸= j or multM (fy) = {vi} if i = j such that the edges f1, . . . , fℓ are
pairwise distinct and E(auxH(Q)) = {f1, . . . , fℓ}. It is not difficult to see that (e1, f1, . . . , eℓ, fℓ)
is a red-blue Eulerian trail of auxH(P) ⊎ auxH(Q).

Next, we prove the other direction. We use the properties of an irredundant k-expression
described in Lemma 2.20.

Lemma 4.70. Let P ∈ Π(H). If there exists a complement solution Q of H such that auxH(P)⊎
auxH(Q) admits a red-blue Eulerian trail, then there exists Q⋆ ∈ Π(H) such that P and Q⋆ form
a Hamiltonian cycle.

Proof. Let T = (va1 , r1, vc1 , b1, va2 , r2, vc2 , · · · , vaℓ , rℓ, vcℓ , bℓ, va1) be a red-blue Eulerian trail of
auxH(P)⊎auxH(Q) with r1, . . . , rℓ ∈ E(auxH(P)) and b1, . . . , bℓ ∈ E(auxH(Q)). In the following,
the indexes are modulo ℓ.

For each i ∈ [ℓ], we associate ri with a maximal path Pi of H|P with end-vertices labeled ai
and ci and we associate bi with an H-path Qi of G|Q with end-vertices labeled ci and ai+1, such
that P1, . . . , Pℓ, Q1, . . . , Qℓ are all pairwise distinct.

For every i ∈ [ℓ], we construct from Qi an H-path Q⋆
i of G by doing the following. Let u, v

be respectively the last end-vertex of Pi and the first end-vertex of Pi+1. Observe that u and the
first vertex of Qi are labeled ci, and v and the last vertex of Qi are labeled ai+1. We distinguish
two cases:

• Suppose that Qi = (x, xy, y), i.e., Qi uses only one edge. Since Q is a complement solution
of H, we have xy ∈ E(G) \ E(H). By Lemma 2.20, we have uv ∈ E(G) \ E(H). In this
case, we define Q⋆

i = (u, uv, v).

• Assume now that Qi = (x, xy, y, . . . , w, wz, z) with w, y ∈ V (G) \V (H) (possibly, w = y).
Since x and u have the same label in H, by Lemma 2.20, we have NG(x) \ V (H) =
NG(u) \ V (H). Hence, u is also adjacent to y. Symmetrically, we have v is adjacent to w.
In this case, we define Q⋆

i = (u, uy, y, . . . , w, wv, v), i.e., the path with the same internal
vertices as Qi and with end-vertices u and v.

In both cases, we end up with a path Q⋆
i that uses the same internal vertices as Qi and

whose end-vertices are the last vertex of Pi and the first vertex of Pi+1. We conclude that

P1 −Q⋆
1 − · · · − Pℓ −Q⋆

ℓ

is a Hamiltonian cycle.
Let Q⋆ be the set of edges used by the paths Q⋆

1, . . . , Q
⋆
ℓ . By construction, we have Q⋆ ⊆

E(G)\E(H), and thus Q⋆ ∈ Π(H). Observe that, for every i ∈ [ℓ], the labels of the end-vertices
of Q⋆

i are the same as those of Qi. Consequently, we have auxH(Q⋆) = auxH(Q).

It is well known that a connected multigraph contains an Eulerian trail if and only if every
vertex has even degree. As an extension, Kotzig [101] proved that a connected two-edge colored
graph (without loops and multiple edges) contains a red-blue Eulerian trail if and only if each
vertex is incident with the same number of edges for both colors. This result can be easily
generalized to multigraphs by replacing red edge with a path of length 3 whose colors are red,
blue, red in the order, and replacing blue edge with a path of length 3 whose colors are blue,
red, blue in the order. For the completeness of this manuscript, we add its proof.

Let G be a multigraph whose edges are colored red or blue, and let R and B be respectively
the set of red and blue edges. For a vertex v ∈ V (G), we let rdegG(v) and bdegG(v) be respectively
the degree of v in G|R and G|B. Recall that a loop is counted twice in the degree of a vertex.
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Lemma 4.71 (Kotzig [101]). Let G be a connected multigraph whose edges are colored red or
blue. Then G has a red-blue Eulerian trail if and only if, for every vertex v, bdegG(v) = rdegG(v).

Proof. One can easily check that if G has a red-blue Eulerian trail, then for every vertex v,
bdegG(v) = rdegG(v). Indeed, if T = (v1, e1, v2, . . . , vℓ, eℓ, v1) is a red-blue Eulerian trail, then,
for 2 ≤ i ≤ ℓ, ei−1 and ei have different colors, and e1 and eℓ have different colors, we can
conclude that the blue edges incident with a vertex v are in 1-to-1 correspondence with the red
edges incident with v (by counting twice the loops).

Let us now prove the other direction. Let T := (v1, e1, v2, e2, · · · , vi, ei, vi+1) be a longest
red-blue trail. We may assume that e1 is colored red. First observe that v1 = vi+1. Otherwise,
bdegT (v1) + 1 = rdegT (v1) and thus, there is a blue edge in E(G) \ E(T ) incident with v1. So,
we can extend T by adding this edge, a contradiction. Thus, v1 = vi+1.

Next we show that ei is colored blue. Suppose ei is colored red. Then bdegT (v1) + 2 =
rdegT (v1) and thus, there is a blue edge in E(G) \ E(T ) incident with v1. So, we can extend T
by adding this edge, a contradiction. Thus, ei is colored red, and it implies that T is a closed
red-blue trail. It means that T can be considered as a closed red-blue trail starting from any
vertex of T and following the same order or the reverse order of T .

Now, we show that V (G) = V (T ). Suppose V (G)\V (T ) is non-empty. Since G is connected,
there is an edge vw with v ∈ V (T ) and w ∈ V (G)\V (T ). If vw is a red edge, then starting from
this edge and following T from a blue edge incident with v, we can find a red-blue trail longer
than T , a contradiction. The same argument holds when vw is a blue edge. Therefore, we have
that V (G) = V (T ). By a similar argument, one can show that E(G) = E(T ); if there is an edge
vw in E(G) \ E(T ), we can extend T by putting vw at the beginning. So, E(G) = E(T ).

We conclude that T is a red-blue Eulerian trail, as required.

In order to prove the correctness of our algorithm, we need the following relation between
subsets of partial solutions.

Definition 4.72. Let A and B be two subsets of Π(H). We write A ≲H B if, for every multigraph
M whose edges are colored blue, whenever there exists P1 ∈ B such that auxH(P1)⊎M admits a
red-blue Eulerian trail, there exists P2 ∈ A such that auxH(P2) ⊎M admits a red-blue Eulerian
trail.

The main idea of our algorithm for Hamiltonian Cycle, is to compute, for every k-labeled
graph H arising in ϕ, a set A ⊆ Π(H) of small size such that A ≲H Π(H). Indeed, by Lemmas
4.69 and 4.70, A ≲H Π(H) implies that if there exist P ∈ Π(H) and Q ∈ Π(H) such that P
and Q form a Hamiltonian cycle, then there exist P⋆ ∈ A and Q⋆ ∈ Π(H) such that P⋆ and Q⋆

form a Hamiltonian cycle. The following lemma is the key of our algorithm.

Lemma 4.73. Let A ⊆ Π(H). Then reduceH(A) ≲H A.

Proof. Let P ∈ A and M be a multigraph whose edges are colored blue such that auxH(P)⊎M
admits a red-blue Eulerian trail. By definition, reduceH(A) contains a partial solution P⋆ such
that P ≃ P⋆. As auxH(P)⊎M contains a red-blue Eulerian trail, by Lemma 4.71, we have that

• auxH(P) ⊎M is connected and

• for every i ∈ [k], degauxH(P)(vi) = degM(vi).

Since auxH(P) has the same set of connected components as auxH(P⋆), we know that auxH(P⋆)⊎
M is also connected. Moreover, for every i ∈ [k], we have

degauxH(P)(vi) = degauxH(P⋆)(vi) = degM(vi).
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By Lemma 4.71, we conclude that auxH(P⋆) ⊎M admits a red-blue Eulerian trail.
Thus, for every P ∈ A and multigraph M with blue edges such that auxH(P)⊎M admits a

red-blue Eulerian trail, there exists P⋆ ∈ reduceH(A) such that auxH(P⋆)⊎M admits a red-blue
Eulerian trail. Hence, we have reduceH(A) ≲H A.

Lemma 4.74. Let A,B ⊆ Π(H). If A ≲H B, then reduceH(A) ≲H B.

Proof. One easily checks that ≲H is a transitive relation. Now, assuming that A ≲H B, we have
reduceH(A) ≲ B because reduceH(A) ≲H A by Lemma 4.73.

4.4.4 Hamiltonian Cycle problem

In this subsection, we present our algorithm solving Hamiltonian Cycle. Our algorithm com-
putes recursively, for every k-labeled graph H arising in the k-expression of G, a set AH such
that AH ≲H Π(H) and |AH | ≤ nk · 2k(log2(k)+1). In order to prove the correctness of our algo-
rithm, we need the following lemmas which prove that the operations we use to compute sets of
partial solutions preserve the relation ≲H .

Lemma 4.75. Let H = ρi→j(D). If AD ≲D Π(D), then AD ≲H Π(H).

Proof. First, observe that H has the same set of vertices and edges as D. Thus, we have Π(H) =
Π(D) and Π(H) = Π(D). Suppose that AD ≲D Π(D).

Let P ∈ Π(H) and M be a multigraph whose edges are colored blue such that auxH(P)⊎M
contains a red-blue Eulerian trail T . To prove the lemma, it is sufficient to prove that there
exists P⋆ ∈ AD such that auxH(P⋆) ⊎M contains a red-blue Eulerian trail.

Let f be a bijective function such that

• for every edge e of auxD(P) with endpoints vℓ and vi, for some ℓ, f(e) is an edge of auxH(P)
with endpoints vℓ and vj , and

• for every loop e with endpoint vi, f(e) is a loop of auxH(P) with endpoint vj .

By construction of auxD(P) and auxH(P), such a function exists.
We construct the multigraph M′ from M and T by successively doing the following:

• For every edge e of the multigraph auxD(P) with endpoints vℓ and vi, take the subwalk
W = (vℓ, f(e), vj , ea, va) of T . Replace ea in M by an edge e′a with endpoints vi and va.

• For every loop e with endpoint vi in the multigraph auxD(P), take the subwalk W =
(va, ea, vj , f(e), vj , eb, vb) of T . Replace ea (respectively eb) in M by an edge e′a (resp. e′b)
with endpoints va and vi (resp. vi and vb).

By construction, one can construct from T a red-blue Eulerian trail of auxD(P)⊎M′. Since
AD ≲D Π(D), there exists P⋆ ∈ AD such that auxD(P⋆)⊎M′ contains a red-blue Eulerian trail.
Observe that auxH(P) (respectively M) is obtained from auxD(P⋆) (resp. M′) by replacing each
edge associated with {vi, vk} or {vi} in auxD(P⋆) (resp. M′) with an edge associated with {vj , vk}
or {vj} respectively. We conclude that auxH(P⋆) ⊎M admits a red-blue Eulerian trail.

Lemma 4.76. Let H = D⊕F . If AD ≲D Π(D) and AF ≲F Π(F ), then (AD ⊗AF ) ≲H Π(H).

Proof. Observe that V (D) and V (F ) are disjoint. Consequently, we have Π(H) = Π(D)⊗Π(F ),
and, for all PD ∈ Π(D) and PF ∈ Π(F ), we have auxH(PD ∪ PF ) = auxH(PD) ⊎ auxH(PF ).
Suppose that AD ≲D Π(D) and AF ≲F Π(F ).
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Let PD ∈ Π(D) and PF ∈ Π(F ), and let M be a multigraph whose edges are colored blue
such that there exists a red-blue Eulerian trail T in auxH(PD ∪ PF ) ⊎ M. It is sufficient to
prove that there exist P⋆

D ∈ AD and P⋆
F ∈ AF such that auxH(P⋆

D ∪P⋆
F )⊎M admits a red-blue

Eulerian trail.
We begin by proving that there exists P⋆

D ∈ AD such that auxH(P⋆
D ∪ PF ) ⊎M contains a

red-blue Eulerian trail. In order to do so, we construct from auxH(PD∪PF )⊎M a multigraph M′

by successively repeating the following: take a maximal sub-walk W of T which uses alternately
blue edges and red edges from auxH(PF )⊎M, remove these edges and add a blue edge between
the two end-vertices of W .

By construction of M′, for every P ′
D ∈ Π(D), if auxD(P ′

D) ⊎M′ admits a red-blue Eulerian
trail, then auxH(P ′

D ∪ PF ) ⊎ M contains a red-blue Eulerian trail also. We also deduce from
this construction that the multigraph auxD(PD) ⊎ M′ contains a red-blue Eulerian trail. As
AD ≲D Π(D), there exists P⋆

D such that auxD(P⋆
D)⊎M′ contains a red-blue Eulerian trail. We

conclude that auxH(P⋆
D ∪ PF ) ⊎M contains also a red-blue Eulerian trail.

Symmetrically, we can prove that there exists P⋆
F ∈ AF such that auxH(P⋆

D ∪ P⋆
F ) ⊎ M

contains a red-blue Eulerian trail. This proves the lemma.

For two k-labeled subgraphs H and D arising in the k-expression of G such that H = ηi,j(D),
we denote by EH

i,j the set of edges whose endpoints are labeled i and j, i.e., {uv ∈ E(H) :
labH(v) = i ∧ labH(v) = j}. For P ∈ Π(H), we denote by P + (i, j) the set of all partial
solutions P ′ of Π(H) obtained by the union of P and an edge uv in EH

i,j . Observe that u and v
must be the endpoints of two distinct maximal paths of H|P . We extend this notation to sets
of partial solutions; for every A ⊆ Π(H), we denote by A + (i, j), the set

⋃
P∈A(P + (i, j)). It

is worth noting that Π(D) ⊆ Π(H) and thus the operator +(i, j) is well defined for a partial
solution in Π(D).

Moreover, for every A ⊆ Π(D) and integer t ≥ 0, we define the set At as follows

At :=

{
A if t = 0,
reduceH(At−1 + (i, j)) otherwise.

Observe that each set P in At is a partial solution of H and |P ∩ EH
i,j | = t.

Lemma 4.77. Let H = ηi,j(D) such that E(D) ∩ EH
i,j = ∅. If AD ≲D Π(D), then we have

A0
D ∪ · · · ∪ An

D ≲H Π(H).

Proof. Suppose that AD ≲D Π(D). We begin by proving the following claim.

Claim 4.77.1. Let A,B ⊆ Π(H). If A ≲H B, then A+ (i, j) ≲H B + (i, j).

Proof. Suppose that A ≲H B. Let P ∈ B + (i, j) and M be a multigraph with blue edges such
that auxH(P) ⊎ M admits a red-blue Eulerian trail. Take vw ∈ EH

i,j such that P ′ := P − uw

belongs to B and v ∈ lab−1
H (i) and w ∈ lab−1

H (j). Let M′ be the multigraph obtained by adding
a blue edge f with endpoints vi and vj to M.

We claim that the multigraph auxH(P ′)⊎M′ admits a red-blue Eulerian trail. Note that there
is a path P ∈ P containing the edge uw, and when we remove uw from P, we divide P into two
maximal subpaths, say P1 and P2. Without loss of generality, we may assume that P1 contains
v and P2 contains w. Let v′ and w′ be the other end-vertices of P1 and P2, respectively, and let
i′ := labH(v′) and j′ := labH(w′). Note that auxH(P ′) can be obtained from auxH(P) by removing
an edge e associated with {vi′ , vj′} and adding two edges e1 and e2 associated with {vi′ , vi} and
{vj , vj′} respectively. So, we can obtain a red-blue Eulerian trail of auxH(P ′)⊎M′ from a red-blue
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Eulerian trail of auxH(P)⊎M by replacing (vi′ , e, vj′) with the sequence (vi′ , e1, vi, f, vj , e2, vj′)
where f is the blue edge we add to M to obtain M′. It implies the claim.

Now, since A ≲H B, there exists P⋆ ∈ A such that auxH(P⋆)⊎M′ admits a red-blue Eulerian
trail T . Let W be the subwalk of T such that W = (va, ea, vi, f, vj , eb, vb). Take two maximal
paths P1 and P2 in H|P⋆ such that the end-vertices of P1 (respectively P2) are labeled a and
i (resp. b and j). Let P̂ be the partial solution of H obtained from P⋆ by adding the edge in
EH
i,j between the end-vertex of P1 labeled i and the end-vertex of P2 labeled j. By construction,

we have P̂ ∈ A + (i, j) and auxH(P̂) ⊎ M admits a red-blue Eulerian trail. We conclude that
A+ (i, j) ≲H B + (i, j).

Let Π(D) + t(i, j) be the set of partial solutions of H obtained by applying t times the
operation +(i, j) on Π(D). Since every partial solution of H is obtained from the union of a
partial solution of D and a subset of EH

i,j of size at most n, we have Π(H) =
⋃

0≤t≤n(Π(D) +
t(i, j)).

Since V (D) = V (H) and E(D) ⊆ E(H), we have A0
D = AD ≲H Π(D) + 0(i, j). Let

ℓ ∈ {1, . . . , n} and suppose that Aℓ−1
D ≲H Π(D) + (ℓ − 1)(i, j). From Claim 4.77.1, we have

Aℓ−1
D +(i, j) ≲H Π(D)+ ℓ(i, j). By Lemma 4.74, we deduce that Aℓ

D = reduce(Aℓ−1
D +(i, j)) ≲H

Π(D) + ℓ(i, j).
Thus, by recurrence, for every 0 ≤ ℓ ≤ n, we have Aℓ

D ≲H Π(D) + ℓ(i, j). We conclude that
A0

D ∪ · · · ∪ An
D ≲H Π(H).

We are now ready to prove the main theorem of this section.

Theorem 4.78. There exists an algorithm that, given an n-vertex graph G and a k-expression
ϕ of G, solves Hamiltonian Cycle in time O(n2k+5 · 22k(log2(k)+1) · k3 · log2(nk)).

Proof. Since every k-expression can be transformed into an irredundant k-expression in linear
time, we may assume that ϕ is an irredundant k-expression.

We do a bottom-up traversal of the k-expression and at each k-labeled graph H arising in
ϕ, we compute a set AH ⊆ Π(H) such that |AH | ≤ nk2k(log(k)+1) and AH ≲H Π(H), by doing
the following:

• If H = i(v), then we have Π(H) = {∅} because E(H) = ∅. In this case, we set AH := {∅}.
Obviously, we have AH ≲H Π(H).

• If H = ρi,j(D), then we set AH := AD.

• If H = D ⊕ F , then we set AH := reduceH(AD ⊗AF ).

• If H = ηi,j(D), then we set AH := reduceH(A0
D ∪ · · · ∪ An

D).

For the last three cases, we deduce, by induction, from Lemma 4.74 and Lemmas 4.75–4.77
that AH ≲H Π(H). Moreover by the use of the function reduceH , by Lemma 4.68, we have
|AH | ≤ nk · 2k(log(k)+1).

We now explain how our algorithm decides whether G admits a Hamiltonian cycle. We claim
that G has a Hamiltonian cycle if and only if there exist two k-labeled graphs H and D arising
in ϕ with V (H) = V (G) and H = ηi,j(D), and there exists P ∈ AD such that, for every
ℓ ∈ [k] \ {i, j}, we have degauxD(P)(vℓ) = 0 and degauxH(P)(vi) = degauxH(P)(vj) > 0.

First suppose that G contains a Hamiltonian cycle C and take the k-labeled graph H arising
in ϕ such that E(C) ⊆ E(H) and |E(H)| is minimal. Note that the operations of taking the
disjoint union of two graphs or relabeling cannot create a Hamiltonian cycle. Thus, by minimality,
we have H = ηi,j(D) such that
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• D is a k-labeled graph arising in ϕ and i, j ∈ [k],

• E(C) ̸⊆ E(D).

It follows that E(C) \ E(D) ⊆ EH
i,j . Let P := E(C) ∩ E(D) and Q := E(C) ∩ EH

i,j . Observe
that P ∈ Π(D) and Q ∈ Π(D). By Lemma 4.69, the multigraph auxD(P) ⊎ auxD(Q) contains a
red-blue Eulerian trail. Since AD ≲D Π(D), there exists P⋆ ∈ AD such that auxD(P⋆)⊎auxD(Q)
contains a red-blue Eulerian trail. As Q ⊆ EH

i,j , we deduce that, for every ℓ ∈ [k] \ {i, j}, we have
degauxD(P⋆)(vℓ) = 0 and degauxH(P⋆)(vi) = degauxH(P⋆)(vj).

For the other direction, suppose that the latter condition holds. Let Q be the graph on the
vertex set V (G) such that it contains exactly degauxH(P)(vi) many edges between the set of ver-
tices labeled i and the set of vertices labeled j. Observe that auxH(Q) consists of degauxH(P)(vi)
many edges between vi and vj . Therefore, by Lemma 4.71, auxH(P) ⊎ auxH(Q) admits a red-
blue Eulerian trail. Then, by Lemma 4.70, there exists Q⋆ ∈ Π(H) such that P and Q⋆ form a
Hamiltonian cycle, as required.

Running time. Let H be a k-labeled graph arising in ϕ. Observe that if H = i(v) or H =
ρi→j(D), then we compute AH in time O(1). By Lemma 4.68, for every A ⊆ Π(H), we can
compute reduceH(A) in time O(|A| · nk2 log2(nk)). Observe that, for every k-labeled graph D
arising in ϕ and such that AD is computed before AH , we have |AD| ≤ nk · 2k(log2(k)+1). It
follows that:

• If H = D ⊕ F , then we have |AD ⊗ AF | ≤ n2k · 22k(log2(k)+1). Thus, we can compute
AH := reduceH(AD ⊗AF ) in time

O(n2k+1 · 22k(log2(k)+1) · k2 log2(nk)).

• If H = ηi,j(D), then we can compute AH in time

O(nk+4 · 2k(log2(k)+1) · k2 log2(nk)).

First observe that, for every partial solution P of H, we have |P + (i, j)| ≤ n2 and we
can compute the set P + (i, j) in time O(n2). Moreover, by Lemma 4.68, for every ℓ ∈
{0, . . . , n− 1}, we have |Aℓ

D| ≤ nk · 2k(log2(k)+1) and thus, we deduce that |Aℓ
D + (i, j)| ≤

nk+2·2k(log2(k)+1) and that Aℓ+1
D can be computed in time O(nk+3·2k(log2(k)+1)·k2 log2(nk)).

Thus, we can compute the sets A1
D, . . . ,An

D in time O(nk+4 ·2k(log(k)+1) ·k2 log2(nk)). The
running time to compute AH from AD follows from |A0

D ∪ · · · ∪An
D| ≤ nk+1 · 22k(log2(k)+1).

Since ϕ uses at most O(n) disjoint union operations and O(nk2) unary operations, we deduce
that the total running time of our algorithm is

O(n2k+5 · 22k(log2(k)+1) · k4 log2(nk)).

4.4.5 Directed Hamitonian cycle

In this subsection, we explain how to adapt our approach for directed graphs. A k-labeled digraph
is a pair (G, labG) of a digraph G and a function labG from V (G) to [k]. Directed clique-width is
also defined in [32], and it is based on the four operations, where the three operations of creating
a digraph, taking the disjoint union of two labeled digraphs, and relabeling a digraph are the
same, and the operation of adding edges is replaced with the following:
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• For a labeled digraph G and distinct labels i, j ∈ [k], add all the non-existent arcs from
vertices with label i to vertices with label j (so we do not add arcs of both directions
altogether).

A directed clique-width k-expression and directed clique-width are defined in the same way. A
directed Hamiltonian cycle of a digraph G is a directed cycle containing all the vertices of G.
The Directed Hamiltonian Cycle problem asks, for a given digraph G, whether G contains
a directed Hamiltonian cycle or not.

With a similar approach, we can show the following.

Theorem 4.79. There exists an algorithm that, given an n-vertex digraph G and a directed
clique-width k-expression of G, solves Directed Hamiltonian Cycle in time nO(k).

For Directed Hamiltonian Cycle, auxiliary graphs should be directed graphs. We define
partial solutions and auxiliary multigraphs similarly, at the exception that a directed maximal
path (resp. H-path) from a vertex labeled i to a vertex labeled j in a partial solution (resp.
complement solution) corresponds to an arc (vi, vj) in its auxiliary multigraph.

Let G be an n-vertex directed graph and ϕ be a directed irredundant k-expression of G.
Similarly to the proof of Theorem 4.78, for every k-labeled graph H arising in ϕ, we recursively
compute a set AH of small size such that AH represents Π(H) which is the set of all partial
solutions of H.

It is not hard to see that Lemmas 4.69 and 4.70 hold also in the directed case. That is, we have
an equivalence between directed Hamiltonian cycles in graphs and directed red-blue Eulerian
trails in directed multigraphs. Thus, to adapt our ideas for undirected graphs, we only need
to characterize the directed multigraphs which admit a red-blue Eulerian trail. Fleischner [56,
Theorem VI.17] gave such a characterization for directed graphs without loops and multiple
arcs, but the proof can easily be adapted for directed multigraphs.

Let M be a directed multigraph whose arcs are colored red or blue, and let R and B be
respectively its set of red and blue arcs. We denote by M∗ the digraph derived from M with
V (M∗) := {v1, v2 : v ∈ V (M)} and E(M∗) := {(v1, w2) : (v, w) ∈ B}∪{(v2, w1) : (v, w) ∈ R}.
For a digraph G and a vertex v of G, we denote by deg+G(v) and deg−G(v), respectively, the
outdegree and indegree of v in G.

Lemma 4.80 (Fleischner [56]). Let M be a directed multigraph whose arcs are colored red or
blue. The following are equivalent.

1. M has a red-blue Eulerian trail.

2. M∗ has an Eulerian trail.

3. The underlying undirected graph of M∗ has at most one connected component containing
an edge, and, for each vertex v of M∗, deg+M∗(v) = deg−M∗(v).

In (3), the condition that “for each vertex v of M∗, deg+M∗(v) = deg−M∗(v)” can be translated
to that, for each vertex v of M , the number of blue incoming arcs is the same as the number of red
outgoing arcs, and the number of red incoming arcs is the same as the number of blue outgoing
arcs. However, an important point is that instead of having that the underlying undirected
graph of M∗ has at most one connected component containing an edge, the condition that “the
underlying graph of M is connected” or “M is strongly connected” is not sufficient, because the
connectedness of M∗ depends on the colors of arcs. We give an example9. Let G be a graph
on {x, y, z} with red arcs (x, y), (y, z) and blue arcs (z, y), (y, x). Even though G is strongly

9This example was suggested by an anonymous reviewer.

139



connected, it does not have a red-blue Eulerian trail, and one can check that M∗ has two
connected components containing an edge.

To decide whether the underlying undirected graph of M∗ has at most one connected com-
ponent containing an edge, multiple arcs are useless. So, it is enough to keep one partial solution
P for each degree sequence in auxH(P) and for each set {multauxH(P)(e) : e ∈ E(auxH(P))}.

Let ≃ be the equivalence relation on Π(H) such that P1 ≃ P2 if the following are satisfied:

• for every pair (v, w) of vertices in {v1, . . . , vk}, there exists an arc from v to w in auxH(P1)
if and only if there exists one in auxH(P2),

• for every vertex v in {v1, . . . , vk}, deg+auxH(P1)
(v) = deg+auxH(P2)

(v) and deg−auxH(P1)
(v) =

deg−auxH(P2)
(v).

From Lemma 4.80 and the definition of M∗, we deduce the following fact.

Fact 4.81. Let P1,P2 ∈ Π(H). If P1 ≃ P2, then P1 is part of a directed Hamiltonian cycle in
G if and only if P2 is part of a directed Hamiltonian cycle in G.

From the definition of ≃, one can show that |Π(H)/ ≃ | ≤ n2k · 2k2 . Thus we can follow
the lines of the proof for undirected graphs, and easily deduce that one can solve Directed
Hamiltonian Cycle in time nO(k), where k is the directed clique-width of the given digraph.

4.4.6 Conclusion

In Subsection 2.6.2, we have already raised some open problems concerning problems which are
W[1]-hard parameterized by clique-width (see Open question 2.66).

We conclude with one explicit question. A digraph D is an out-tree if D is an oriented tree
(an undirected tree with orientations on edges) with only one vertex of indegree zero (called
the root). The vertices of out-degree zero are called leaves of D. The Min Leaf Out-Branching
problem asks for a given digraph D and an integer ℓ, whether there is a spanning out-tree of D
with at most ℓ leaves. This problem generalizes Hamiltonian Path (and also Hamiltonian
Cycle) by taking ℓ = 1. Ganian, Hliněný, and Obdržálek [66] showed that there is an n2O(k)-time
algorithm for solving Min Leaf Out-Branching problem, when a clique-width k-expression
of a digraph D is given. This raises naturally the following question.

Open Question 4.82. Is the problem Minimum Leaf Spanning Tree solvable in time nO(k)

when a clique-width k-expression of the input digraph is given?
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Chapter 5

Counting problems

In this chapter, we present our results on the counting problems. We start by an introduction
concerning the complexity of counting problems parameterized by width measures. In Section
5.2, we prove that one can compute in polynomial time the number of minimal transversals
of β-acyclic hypergraphs. In Subsection 5.2.3, we show that, as a corollary, we can count in
polynomial time the minimal dominating sets of strongly chordal graphs and we discuss about
the possible extensions of this corollary. In Subsection 5.2.4, we conclude this chapter by some
open questions concerning the counting of minimal transversals and in particular, we discuss
about how some existing parameters on hypergraphs could be used to extend our result.

5.1 Introduction

Even through the parameterized complexity of counting problems are less studied than those of
decision problems, some results are known concerning width measures. Arnborg, Lagergren, and
Seese [3] extended Courcelle’s theorem by showing that every counting problem expressible in
MSO2 are FPT parameterized by the tree-width of the input graph. Makowsky [105] proved that
evaluating the Tutte polynomial is FPT when parameterized by tree-width. Moreover, Courcelle,
Makowsky, and Rotics [33] generalized Theorem 2.52 by showing that every counting problem
expressible in MSO1 is FPT parameterized by the clique-width of the input graph.

Efficient algorithms are known for the counting variants of NP-hard problems parameterized
by tree-width. For example, Bodlaender et al. [9] designed a framework called determinant ap-
proach which provides 2O(tw(G)) ·n time algorithms for the counting variants of many connectivity
problems such as Hamiltonian Cycle and Steiner Tree.

Recently, Golovach et al. [73, Theorem 36] proved the following theorem about counting the
1-minimal and 1-maximal (σ, ρ)-dominating sets with the d-neighbor-width as parameter. For
a graph G, a (σ, ρ)-dominating set D ⊆ V (G) of G is 1-maximal (resp. 1-minimal) if for all
u ∈ V (G) \D (resp. u ∈ D), the set D ∪ u (resp. D \ u) is not a (σ, ρ)-dominating set.

Theorem 5.1 ([73]). Let (σ, ρ) be a pair of finite or co-finite subsets of N. Given an n-
vertex graph G and L a rooted layout of G, we can count the 1-maximal (or 1-minimal) (σ, ρ)-
dominating sets of G in time O(necd(L)8 · n2) with d a constant depending on (σ, ρ).

In particular, Theorem 5.1 implies that we can count the minimal dominating sets (or max-
imal independent sets) in time nO(mim(L)) given a rooted layout L of the input graph.

Concerning intractability results, it is worth mentioning that Flum and Grohe [57] intro-
duced the #W-hierarchy, an analog of the W-hierarchy for parameterized counting problems.
They proved that counting paths (or cycles) of length k parameterized by k is #W[1]-complete.
Consequently, it is unlikely that there exits an f(k) ·nO(1) time algorithm for counting the paths
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(or the cycles) of length k of an n-vertex graph, for any function f , even through there is a
2O(k) · nO(1) time algorithm for finding a path (or cycle) of length k [2].

5.2 Counting Minimal Transversals of β-acyclic Hypergraph

In this section, we show that we can count in polynomial time the minimal transversals of
β-acyclic hypergraphs. The Transversal Enumeration problem (enumerating the minimal
transversals) was already known to be tractable for this class [46] and computing the number of
transversals is polynomial [15]. However, the complexity of computing the number of minimal
transversals was still unknown. More precisely, we prove the following theorem:

Theorem 5.2. The number of minimal transversals of a β-acyclic hypergraph can be computed
in polynomial time.

A direct consequence of our result is the following corollary concerning the counting of
minimal dominating sets in a subclass of chordal graphs, called strongly chordal graphs.

Corollary 5.3. The number of minimal dominating sets of a strongly chordal graph is com-
putable in polynomial time.

Notice that strongly chordal graphs have unbounded mim-width [108], thus Corollary 5.3 is
not implied by Theorem 5.1.

Besides the polynomial time algorithm, the main contribution of this chapter is the modifica-
tion of the framework considered in [21] in order to count minimal models. The techniques used
in [73, 94] are based on structural restrictions and as shown in [21] cannot work for β-acyclic
hypergraphs. Instead, Capelli showed in [21] how to construct, from the elimination ordering of
a β-acyclic hypergraph associated with a boolean formula, a circuit whose satisfying assignments
correspond to the models of the boolean formula. Such circuits are known as decision Decom-
posable Negation Normal Form in knowledge compilation. While the technique allows to count
the models of non-monotone formulas, it cannot be used to count the minimal models. Indeed,
the branchings of the constructed circuit do not allow to control the minimality. We overcome
this difficulty by introducing the notion of blocked transversals, which corresponds roughly to
the minimal transversals of a sub-hypergraph that are transversals of the whole hypergraph. We
then show that blocked transversals can be used to control the minimality in the construction
of the circuit. However, this control is only possible in the case of monotone Boolean formulas,
corresponding to counting the minimal transversals of β-acyclic hypergraphs.

Because of technical definitions, we postpone the details of the algorithm in Subsection
5.2.2. The chapter is organized as follows. In Subsection 5.2.1, we present the concepts related
to hypergraphs and transversals, then we define the concept of blocked transversals and we give
some intermediate lemmas concerning this concept. In Subsection 5.2.2, we start by refining the
decomposition of β-acyclic hypergraphs proposed in [21] to take into account blocked transversals.
In Subsection 5.2.3, we show how to obtain Corollary 5.3 and we discuss about how it partially
answers a conjecture raised by Kanté and Uno [96]. We conclude by discussing about the possible
extensions of our result and in particular, we present two width measures on hypergraphs which
could potentially be used to extend our result.

5.2.1 Definitions and notations

Hypergraphs

A hypergraph H is a collection of subsets of a finite ground set. The elements of H are called
the hyperedges of H and the vertex set of H is V (H) :=

⋃
e∈H e.
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Given S ⊆ V (H), we denote by H[S] the hypergraph induced by S, that is, H[S] := {e ∩ S :
e ∈ H}. Any subset H′ of H is called a sub-hypergraph of H. Observe that if there exists e ∈ H
such that e ⊆ V (H)\S, then ∅ ∈ H[S]. We do not enforce hypergraphs to have non-empty edges
or to be non-empty. However, a hypergraph with an empty edge may behave counter-intuitively.
In the following definitions, we explicitly explain the extremal cases where ∅ ∈ H or H = ∅.

Given a hypergraph H and a subset S ⊆ V (H) of its vertex set, we denote by H(S) the set
of hyperedges of H containing at least one vertex in S, that is, H(S) := {e ∈ H : S ∩ e ̸= ∅};
to ease notations, we write H(x) instead of H({x}) for x ∈ V (H). Observe that H(x) is the
set of hyperedges containing x. We use this notation on sub-hypergraphs of H, but also on sets
of (minimal) transversals of H. For the hypergraph H shown in Figure 5.1, H({d, x}) is the
hypergraph {{b, x}, {c, x}, {c, d}}.

Given a hypergraph H, a walk between two distinct edges e1 and ek is a sequence

(e1, x1, e2, x2, . . . , ek−1, xk−1, ek)

such that xi ∈ ei∩ei+1 for all 1 ≤ i ≤ k−1. Notice that, (ek, xk−1, ek−1, . . . , x2, e2, x1, e1) is also
a walk between ek and e1. A maximal set of edges of H that are pairwise connected by a walk
is called a connected component of H. It is worth noticing that if C1, . . . , Ck are the connected
components of H, then V (Ci) ∩ V (Cj) = ∅ for distinct i, j in {1, . . . , k}.

A hypergraph H is said β-acyclic if there exists an ordering x1, . . . , xn of V (H) such that
for each 1 ≤ i ≤ n, the set {e ∩ {xi, . . . , xn} : e ∈ H, xi ∈ e} is linearly ordered by inclusion.
Such an ordering is called a β-elimination ordering. It is well-known that every sub-hypergraph
H′ of a β-acyclic hypergraph H is β-acyclic as well (see for instance [45]).

Transversals

Let H be a hypergraph. A transversal for H is a subset T ⊆ V (H) such that for every e ∈ H,
T ∩ e ̸= ∅. We denote by tr(H) the set of transversals of H. Observe that if ∅ ∈ H, then
tr(H) = ∅ as for every T ⊆ V (H), ∅ ∩ T = ∅, so T cannot be a transversal of H. Finally,
observe that if H = ∅, then tr(H) = {∅}.

A transversal T of H is minimal if and only if for every x ∈ T , it holds that T \ {x} /∈ tr(H).
A hyperedge e such that e ∩ T = {x} is said to be private for x w.r.t. T . When T is clear from
the context, we may refer to such hyperedges as simply privates for x. The following fact follows
directly from the definitions:

Fact 5.4. T is a minimal transversal of a hypergraph H if and only if T is a transversal of H
and each vertex x ∈ T has a private.

We denote by mtr(H) the set of minimal transversals of H. Again, observe that if H = ∅,
then mtr(H) = {∅}.

Figure 5.1 depicts a hypergraph together with its minimal transversals.

a b cx d

Figure 5.1: A hypergraph H = {{a, b}, {b, x}, {x, c}, {c, d}} having 4 minimal transversals. We
have mtr(H) = {{a, x, d}, {a, x, c}, {b, x, d}, {b, c}}.

It is worth noticing that since the sets tr(H) and mtr(H) are sets of subsets of 2V (H), they
may be seen as hypergraphs on V (H). Thus, we will sometimes use the notations tr(H)(S)
(resp. mtr(H)(S)) which refer to the transversals (resp. minimal transversals) T of H such that
S ∩ T ̸= ∅.
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Blocked transversals

Our algorithm uses a dynamic programming approach by finding a relation between the number
of minimal transversals of a β-acyclic hypergraph H with the number of minimal transversals of
some specific subhypergraphs of H. However, it is not possible to directly relate these quantities
together. To illustrate this fact, let H be the hypergraph depicted in Figure 5.1. The minimal
transversals of H containing x are {a, x, c}, {a, x, d} and {b, x, d}. Observe that removing x from
these sets directly yields a minimal transversal of H \ H(x) = {{a, b}, {c, d}}. However, adding
x to a minimal transversal of H\H(x) does not give necessarily a minimal transversal of H. For
example, we have {b, c} ∈ mtr(H \H(x)), but {b, x, c} /∈ mtr(H).

In fact, we can show in general that T ∪x ∈ mtr(H) if and only if T is a minimal transversal
of H \H(x) and T is not a transversal of H. Consequently, the number of minimal transversals
of H containing x is

#mtr(H \H(x))−#(tr(H) ∩mtr(H \H(x))). (5.1)

We can infer from this fact a recursive formula to compute #mtr(H). In the general case,
using this formula as it is will lead to the computation of an exponential number of terms. In
this subsection, we will make this relation more precise by introducing the notion of blocked
transversal. In the next subsection, we will show how we can use this relation to evaluate the
number of minimal transversals of a β-acyclic hypergraph with only a polynomial number of
intermediate values.

Given a hypergraph H, a sub-hypergraph H′ ⊆ H and B ⊆ V (H), we define the B-blocked
transversals of H′ to be the transversals T of H′ such that each vertex x of T has a private in
H′ \ H′(B). In particular, if y is a vertex of B, then y cannot be in a B-blocked transversal of
H′. Observe also that if y ∈ V (H) \ V (H′), then y cannot be in a B-blocked transversal of H′.

Fact 5.5. Given a sub-hypergraph H′ of a hypergraph H and B ⊆ V (H), T is a B-blocked
transversal of H′ if and only if T belongs to tr(H′) ∩mtr(H′ \ H′(B)).

Proof. If T is a transversal of H′ such that each vertex x of T has a private in H′ \ H′(B),
then T ⊆ V (H′ \ H′(B)) and is a transversal of H′ \ H′(B). Thus by Fact 5.4 T is a minimal
transversal of H′ \ H′(B). Conversely, if T is a minimal transversal of H′ \ H′(B), then by Fact
5.4 each vertex x has a private in H′ \ H′(B). If in addition it belongs to the set of transversals
of H′, then it is a B-blocked transversal of H′ by definition.

As an example, let H be the hypergraph depicted in Figure 5.1, H′ = H and B = {x}. The
only B-blocked transversal of H is {b, c}. While {b, d} is a minimal transversal of H \ H(x), it
is not a B-blocked transversal as the hyperedge {x, c} does not intersect {b, d}.

We call the set H′(B) the blocked hyperedges. Intuitively, H′(B) is the set of hyperedges that
cannot be used as privates in a transversal of H′. We denote by btrB(H′) the set of B-blocked
transversals of H′. By Fact 5.5, we have

btrB(H′) := tr(H′) ∩mtr(H′ \ H′(B)).

Observe that by definition, mtr(H) = btr∅(H). Moreover, if H(B) = H ̸= ∅, then btrH(H) = ∅
as mtr(∅) = {∅} and ∅ /∈ tr(H). When B = {x}, we denote btrB(H) by btrx(H).

Given S ⊆ V (H), we denote by tr(H, S) := {T ∈ tr(H) : T ⊆ S}. We extend this notation
to mtr and btr as well. The following summarizes observations about blocked transversals.

Fact 5.6. Let H′ be a sub-hypergraph of a hypergraph H and B,S ⊆ V (H). Then,
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1. btrB(H′) = btrB∩V (H′)(H′).

2. btrB(H′, S) = btrB(H′, S \B).

3. If x /∈ V (H′), then btrB(H′, S) = btrB(H′, S \ {x}).

Let us briefly explain how B-blocked transversals will be used in computing #mtr(H).
One checks easily that #mtr(H) = #mtr(H, V (H) \ {x}) + #mtr(H)(x). By Equation 5.1,
#mtr(H)(x) = #mtr(H \H(x))−#btrx(H). Therefore, we have

#mtr(H) = #btr∅(H) = #btr∅(H, V (H) \ {x}) + #btr∅(H \H(x))−#btrx(H).

We will show in the next subsection that we can define, from the β-elimination ordering of a
β-acyclic hypergraph H, sub-hypergraphs H1, . . . ,Hq ⊆ H and vertices x1, . . . , xq such that, for
all 1 ≤ i ≤ q, #btrxi(Hi) and #btr∅(Hi) can be computed in polynomial time if #btrxj (Hj) and
#btr∅(Hj) are known for all j < i. As a consequence, one can compute #mtr(H) by classical
dynamic programming for any β-acyclic hypergraph.

The end of this subsection is dedicated to the proof of several crucial lemmas concerning
recursive formulas for computing the number of blocked transversals, and that will be useful
in our algorithm. We start by describing the blocked transversals of a hypergraph having more
than one connected component.

Lemma 5.7. Let H be a hypergraph, S,B ⊆ V (H) and C1, . . . , Ck the connected components of
H[S]. For each i ∈ [1, k], let Hi = {e ∈ H : e ∩ S ∈ Ci}. We have:

btrB(H, S) =
k⊗

i=1

btrB(Hi, S).

Proof. Assume that ∅ ∈ H[S], it means that there exists a hyperedge e ∈ H such that e∩S = ∅.
In this case, btrB(H, S) = ∅. Moreover, there exists i ∈ [1, k] such that Ci = {∅} and e ∈ Hi.
Thus, btrB(Hi, S) = ∅ and the equality holds in this case.

Assume from now that ∅ /∈ H[S]. Let T ∈ btrB(H, S). We show that for all i ≤ k, Ti =
T ∩ V (Hi) ∈ btrB(Hi, S). Let e ∈ Hi. Since e ∈ H, we have e ∩ T ̸= ∅. As e ∈ Hi, we
have e ⊆ V (Hi). Thus e ∩ Ti ̸= ∅, that is, Ti ∈ tr(Hi, S). Moreover, let y ∈ Ti. By definition
of T , there exists e ∈ H \ H(B) such that e is private for y w.r.t. T . Observe that we have
Ti ⊆ S ∩ V (Hi) = V (Ci) since T ⊆ S. Thus, y ∈ V (Ci) and e ∩ S ∈ Ci, because Ci is
a connected component. We can conclude that e ∈ Hi and e is private to y w.r.t. Ti and
Hi\H(B) = Hi\Hi(B). Thus Ti is a minimal transversal of Hi\Hi(B). That is Ti ∈ btrB(Hi, S).

Now let T1 ∈ btrB(H1, S), . . . , Tk ∈ btrB(Hk, S). We show that T =
⋃k

i=1 Ti ∈ btrB(H, S).
Let e ∈ H. As H =

⋃k
i=1Hi, there exists i such that e ∈ Hi. Thus e∩Ti ̸= ∅ and thus e∩T ̸= ∅,

that is, T ∈ tr(H). It remains to show that T ∈ mtr(H \ H(B)). Let y ∈ T . By definition of T ,
there exists i such that y ∈ Ti. Thus, there exists e ∈ Hi \ Hi(B) that is private for y w.r.t. Ti.
Moreover, since Hi(B) = Hi ∩H(B), we know that e /∈ H(B). As C1, . . . , Ck are the connected
component of H[S], we have that, for every j ̸= i, V (Ci) ∩ V (Cj) = ∅. Moreover, for all ℓ ≤ k,
we have S ∩ V (Hℓ) = V (Cℓ). As e ⊆ V (Hi) and Tj ⊆ S ∩ V (Hj), we have for every j ̸= i:

e ∩ Tj ⊆ V (Hi) ∩ S ∩ V (Hj) = V (Ci) ∩ V (Cj) = ∅.

Thus, e ∩ T = e ∩ Ti = {y}. In other words, e is private for y w.r.t. T and H \ H(B). That is
T ∈ btrB(H).
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We recall that btrB(H, S)(x) is the set of B-blocked transversals T of H such that T ⊆ S and
x ∈ T . The following lemma shows that for any B-blocked transversal T ⊆ S of H containing
x, we have T \ x is a B-blocked transversal of H \H(x).

Lemma 5.8. Let H be a hypergraph, S,B ⊆ V (H) and x ∈ S. We have

btrB(H, S)(x) ⊆ {{x}}
⊗

btrB(H \H(x), S \ {x}).

Proof. Let H1 := H \ H(x). Let T ∈ btrB(H, S)(x). By definition, x ∈ T and T ⊆ S, thus we
only have to show that T ′ = T \{x} ∈ btrB(H1). Let e ∈ H\H(x). Since T is a transversal of H,
there exists y ∈ e ∩ T . Moreover, by definition, x /∈ e, thus y ∈ T ′, that is, T ′ is a transversal of
H\H(x). It remains to show that T ′ is a minimal transversal of H1\H1(B) = H\(H(B)∪H(x)).
Let y ∈ T ′. Since T is a minimal transversal of H \ H(B), there exists e ∈ H \ H(B) such that
e is private for y w.r.t. T . Since x ∈ T , we have x /∈ e, otherwise e would not be private for y
w.r.t. T . Thus e ∈ H\ (H(B)∪H(x)), that is, e is private to y w.r.t. T ′ in H1 \H1(B). In other
words, T ′ is a minimal transversal of H1 \ H1(B) which concludes the proof.

To complete the previous lemma, we show that for each B-blocked transversal T ⊆ S of
H \H(x), we have T ∪ {x} is a B-blocked transversal of H if and only if T is not a (B ∪ {x})-
blocked transversal of H \ (H(B) ∩H(x)).

Lemma 5.9. Let H be a hypergraph, S,B ⊆ V (H) and x ∈ S. We have(
{{x}}

⊗
btrB(H1, S \ {x})

)
\ btrB(H, S)(x) = {{x}}

⊗
btrB∪{x}(H2, S \ {x})

where H1 := H \H(x) and H2 := H \ (H(B) ∩H(x)).

Proof. We prove the lemma by proving first the left-to-right inclusion (Claim 5.9.1) and then
the right-to-left inclusion (Claim 5.9.2). But first, notice that H1 \H1(B) = H2 \H2(B∪{x}) =
H \ (H(B) ∪H(x)) since H(B) ∪H(x) = H(B ∪ {x}).

Claim 5.9.1. For every T ∈
(
{{x}}

⊗
btrB(H1, S \ {x})

)
\ btrB(H, S)(x), we have T \ {x} ∈

btrB∪{x}(H2, S \ {x}).

Proof. We start by proving that T ′ = T \ {x} is in tr(H2). Assume towards a contradiction
that T ′ /∈ tr(H2), i.e., there exists e ∈ H2 such that e ∩ T ′ = ∅. We prove that it implies
T ∈ btrB(H, S)(x). First, observe that T ∈ tr(H), since T ′ ∈ tr(H1) = tr(H \ H(x)) and
T = T ′ ∪ {x}. Thus, we have e ∩ T = {x} and e ∈ H(x). As e ∈ H2 = H \ (H(B) ∩ H(x)), we
have e ∈ H\H(B) and then e is a private hyperedge for x w.r.t. T and H\H(B). Furthermore,
every vertex in T ′ has a private hyperedge w.r.t. T ′ and H1 \H1(B) = H\ (H(B)∪H(x)) since
T ′ ∈ mtr(H1 \H1(B)). Thus, every vertex in T ′ has a private hyperedge w.r.t. T and H\H(B).
As T ∈ tr(H), we can conclude that T ∈ mtr(H\H(B)). Finally, we have T ⊆ S by assumption.
Therefore T ∈ btrB(H, S)(x) which is a contradiction. Thus, T ′ ∈ tr(H2).

We now prove that T ′ ∈ mtr(H2 \ H2(B ∪ {x})), that is, we prove the minimality of T ′ in
H2 \ H2(B ∪ {x}). Let y ∈ T ′. Since T ∈ btrB(H1), there exists f ∈ H1 \ H1(B) such that
f ∩ T = {y}. Since H1 \ H1(B) = H2 \ H2(B ∪ {x}), every y ∈ T ′ have a private hyperedge in
H2 \ H2(B ∪ {x}), that is T ′ ∈ mtr(H2 \ H2(B ∪ {x})). As T ′ ⊆ S \ {x}, we can conclude that
T ′ ∈ btrB∪{x}(H2, S \ {x}).

Claim 5.9.2. For every T ∈ {x}
⊗

btrB∪{x}(H2, S \ {x}), we have T ∈ {x}
⊗

btrB(H1, S \
{x}) \ btrB(H, S)(x).
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Proof. We start by proving that T ′ = T \ {x} is in btrB(H1, S \ {x}). First, we show that T ′

is a transversal of H1. Let e ∈ H1. By definition of H1, x /∈ e, thus e ∈ H2 as well. Therefore
e∩T ′ ̸= ∅. We now prove that T ′ is minimal in H1\H1(B). As T ′ ∈ mtr(H2\H2(B∪{x})), every
vertex in T ′ has a private hyperedge in H2\H2(B∪{x}). Moreover, recall that H2\H2(B∪{x}) =
H1 \H1(B). Thus, T ′ is minimal in H1 \H1(B). As T ′ ⊆ S \{x}, we have T ′ ∈ btrB(H1, S \{x}).

We finish the proof by showing that T /∈ btrB(H, S)(x). In order to prove it, we show that
there are no private hyperedges for x w.r.t. T and H \ H(B). Indeed, since T ′ ∈ tr(H2), every
hyperedge in H2 contains a vertex in T ′. By definition of H2, we have H \H(B) ⊆ H2, thus for
every hyperedge e in H \H(B), we have e ∩ T ̸= {x}, i.e., e is not a private for x.

By Claim 5.9.1 and Claim 5.9.2 we can conclude the lemma.

Finally, we characterize the number of B-blocked transversals of a hypergraph that do not
contain a given vertex. We use the symbol ⊎ for the disjoint union of sets.

Lemma 5.10. Let H be a hypergraph, S,B ⊆ V (H) and x ∈ S. We have

btrB(H, S) = btrB(H, S)(x) ⊎ btrB(H, S \ {x}).

Proof. Let T ⊆ S be a B-blocked transversal of H. Thus, either we have x ∈ T and then
T ∈ btrB(H, S)(x), or x /∈ T and then T ⊆ S \ {x}, i.e., T ∈ btrB(H, S \ {x}). Since, the two
cases are exclusive, we can conclude that btrB(H, S) is the disjoint union of btrB(H, S)(x) and
of btrB(H, S \ {x}).

A direct consequence of Lemma 5.8, Lemma 5.9 and Lemma 5.10 is the following equality
characterizing the number of B-blocked transversals of H. This will be a crucial step in our
dynamic programming scheme.

Theorem 5.11. Let H be a hypergraph, S,B ⊆ V (H) and x ∈ S. We have

#btrB(H, S) = #btrB(H, S \ {x}) + #btrB(H1, S \ {x})−#btrB∪{x}(H2, S \ {x})

where H1 := H \H(x) and H2 := H \ (H(B) ∩H(x)).

Proof. By Lemma 5.10, #btrB(H, S) = #btrB(H, S \ {x}) + #btrB(H, S)(x). By Lemma 5.8
and Lemma 5.9, {{x}} ⊗ btrB(H1, S \ {x}) = btrB(H, S)(x) ⊎ {{x}} ⊗ btrB∪{x}(H2, S \ {x}).
Hence, #btrB(H, S)(x) = #btrB(H1, S \ {x})−#btrB∪{x}(H2, S \ {x}). Therefore, the claimed
equality holds.

5.2.2 Counting the minimal transversals of β-acyclic hypergraphs

In this subsection, we fix H a β-acyclic hypergraph, ≤ a β-elimination ordering of its vertices and
we let ≤H the induced lexicographic ordering on the hyperedges, i.e., e ≤H f if min(e△f) ∈ e.
We denote by Hx

e the sub-hypergraph of H formed by the hyperedges f ∈ H such that there
exists a walk from f to e going only through hyperedges smaller than e and vertices smaller
than x. For an example, take the β-elimination ordering a, b, x, c, d of the hypergraph in Figure
5.1 and the induced ordering {a, b}, {b, x}, {x, c}, {c, d} on H. For e = {x, c}, the hypergraph
Hx

e is composed of the hyperedges {b, x} and {x, c}.
For a vertex x of V (H), we write [≤ x], [< x] and [≥ x] for, respectively, {y ∈ V (H) : y ≤ x},

{y ∈ V (H) : y ≤ x ∧ y ̸= x} and {y ∈ V (H) : x ≤ y}. Moreover, we write H[≤ x], H[< x] and
H[≥ x] instead of, respectively, H

[
[≤ x]

]
, H
[
[< x]

]
and H

[
[≥ x]

]
.
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Decomposition of β-acyclic hypergraphs

The following two lemmas have been proven in [21, Section III-A].

Lemma 5.12 (Theorem 3 in [21]). For every hyperedge e ∈ H, and x ∈ V (H), we have V (Hx
e )∩

[≥ x] ⊆ e.

Lemma 5.13 (Lemma 2 in [21]). Let e and f be two hyperedges of H such that e ≤H f , and let
x and y be vertices of H such that x ≤ y. If V (Hx

e ) ∩ V (Hy
f ) ∩ [≤ x] ̸= ∅, then Hx

e ⊆ Hy
f .

We prove a lemma on the decomposition of Hx
e graphs that will be used with Lemma 5.7 to

propagate the dynamic programming algorithm.

Lemma 5.14. Let x ∈ V (H), e ∈ H and S ⊆ [≥ x]. Let

H′ :=

{
Hx

e if S = ∅,

Hx
e \
(⋂

w∈S Hx
e (w)

)
otherwise.

For every connected component C of H′[< x] different from {∅}, there exists y < x and f ≤H e
such that C = Hy

f [≤ y] and Hy
f = {g ∈ H′ : g ∩ [< x] ∈ C}.

Proof. Let y = max(V (C)) and f = max{g ∈ H′ : g ∩ [< x] ∈ C}. We show that Hy
f = {g ∈

H′ : g ∩ [< x] ∈ C}.
First, we observe that Hy

f ⊆ H′. If S = ∅, it follows from Lemma 5.13 because, in this case,
H′ = Hx

e . Suppose that S ̸= ∅, by definition of H′, we have S ⊈ f . Moreover, by Lemma 5.12,
we have that V (Hy

f ) ∩ [≥ y] ⊆ f . As S ⊆ [≥ x] and x > y, we have S ⊆ [≥ y]. Thus S ⊈ V (Hy
f )

and for all g ∈ Hy
f , we have S ⊈ g since g ⊆ V (Hy

f ). We can conclude that Hy
f ⊆ H′.

Now, we prove that every g ∈ Hy
f , we have g ∩ [< x] ∈ C. Let g ∈ Hy

f . By definition of Hy
f

and because Hy
f ⊆ H′, there exists a path P from f to g going only through vertices smaller than

y and hyperedges smaller than f in H′. As y < x, we can conclude that f ∩ [< x] is connected
to g ∩ [< x] in H′, i.e., g ∩ [< x] ∈ C. In other words, we have Hy

f ⊆ {g ∈ H′ : g ∩ [< x] ∈ C}.
It remains to prove the other inclusion. Let g ∈ H′ with g∩ [< x] ∈ C. Since C is a connected

component of H′[< x], there exists a path P from f∩[< x] to g∩[< x]. By the maximality of y and
f , P goes only through vertices smaller than y and hyperedges smaller than f . We can construct
from P a path P ′ from f to g in H′ going through vertices smaller than y and hyperedges smaller
than f . As H′ ⊆ H, we can conclude that g ∈ Hy

f and thus, Hy
f = {g ∈ H′ : g ∩ [< x] ∈ C}.

Finally, observe that C = Hy
f [< x] = Hy

f [≤ y] since y = max(V (C)).

The algorithm

In this subsection, we describe the dynamic programming algorithm we use to count the number
of minimal transversals of a β-acyclic hypergraph. We denote by x1 the smallest element of ≤.

Our goal is to compute #btr∅(Hx
e , [≤ x]) and #btrw(Hx

e , [≤ x]) for every e ∈ H, x ∈ V (H)
and w ∈ V (H) such that x < w. Observe that it is enough for computing the number of minimal
transversals of H as #mtr(H) = #btr∅(Hxn

em , [≤ xn]) where em is the maximal hyperedge for
≤H and xn is the maximal vertex for ≤. Indeed, we have Hxn

em = H and [≤ xn] = V (H), thus
btr∅(Hxn

em , [≤ xn]) = btr∅(H) = mtr(H).
The propagation of the dynamic programming works as follows: we use Theorem 5.11 to

reduce the computation of #btrB(Hx
e , [≤ x]) to the computation of #btr for several hypergraphs

that do not contain x. We then use Lemma 5.14 to show that these hypergraphs can be decom-
posed into disjoint hypergraphs of the form Hy

f for f ≤H e and y < x which allows us to compute
#btrB(Hx

e , [≤ x]) from precomputed values of the form #btrB′(Hy
f , [≤ y]), where B′ ∈ {B, {x}}.
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Before continuing, let us give a high-level description of the algorithm. For each 1 ≤ i ≤ n
and each 1 ≤ j ≤ m, let tab[i, j, 0] be #btr∅(Hxi

ej , [≤ xi]), and for each ℓ > i, let tab[i, j, ℓ] be
#btrxℓ

(Hxi
ej , [≤ xi]). Because the number of minimal transversals of H is #btr∅(Hxn

em , [≤ xn]),
it is enough to show how to compute tab[n,m, 0] in polynomial time. The following is a high
level description of the algorithm which computes tab[i, j, ℓ], for all 1 ≤ i ≤ n, 1 ≤ j ≤ m and
ℓ ∈ {0, i+ 1, . . . , n}.

Algorithm CountMinTransversals(H)
H: a β-acyclic hypergraph

1. Let x1, . . . , xn a β-elimination ordering of H.
2. Let e1, . . . , xm the induced lexicographic ordering on H.
3. Precompute Hxi

ej , [≤ xi] for every i ≤ n, j ≤ m.
4. for 1 ≤ i ≤ n and i < ℓ ≤ n do
5. for 1 ≤ j ≤ m do
6. Compute tab[i, j, 0] from the recursive formula of #btr∅(Hxi

ej , [≤ xi]).
7. Compute tab[i, j, ℓ] from the recursive formula of #btrxℓ

(Hxi
ej , [≤ xi]).

8. end for
9. end for
10. return tab[n,m, 0]

In order to ease the presentation, the computation of #btr∅(Hx
e , [≤ x]) and the computation

of #btrw(Hx
e , [≤ x]) are separated, even though many of the arguments are similar.

Base cases. We observe that for every e ∈ H, Hx1
e [≤ x1] is either equal to {x1} or {∅}. Thus,

for every e ∈ H and w ∈ V (H) such that w > x1, we can compute #btr∅(Hx
e , [≤ x1]) and

#btrw(Hx
e , [≤ x1]) in time O(1).

Computing #btr∅(Hx
e , [≤ x]) by dynamic programming. We start by explaining how

we can compute #btr∅(Hx
e , [≤ x]) in polynomial time if the values #btr∅(Hy

f , [≤ y]) and
#btrw(Hy

f , [≤ y]) have been precomputed for f ≤H e and y < x, y < w.
We start by applying Theorem 5.11.

#btr∅(Hx
e , [≤ x]) = #btr∅(Hx

e , [< x])

+ #btr∅(Hx
e \ Hx

e (x), [< x])

−#btrx(Hx
e , [< x]).

Now, let C1, . . . , Ck be the connected components of Hx
e [< x]. If there exists i such that

Ci = {∅}, then #btr∅(Hx
e , [< x]) = #btrx(Hx

e , [< x]) = 0. Otherwise, by applying Lemma 5.14
with S = ∅, there exists, for each 1 ≤ i ≤ k, yi < x and fi ≤H e such that Hyi

fi
= {g ∈ Hf

e :

g ∩ [< x] ∈ Ci} and Ci = Hyi
fi
[≤ yi]. By Lemma 5.7,

#btr∅(Hx
e , [< x]) =

k∏
i=1

#btr∅(Hyi
fi
, [≤ yi]),

#btrx(Hx
e , [< x]) =

k∏
i=1

#btrx(Hyi
fi
, [≤ yi]).

We now show how to decompose #btr∅(Hx
e \ Hx

e (x), [< x]) into a product of precomputed
values. Let D1, . . . , Dl be the connected components of Hx

e \ Hx
e (x)[< x]. If there exists i such
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that Di = {∅}, then #btrx(Hx
e \ Hx

e (x), [< x]) = 0. Otherwise, if we apply Lemma 5.14 with
S = {x}, then there exists, for each 1 ≤ i ≤ l, yi < x and fi ≤H e such that Hfi

yi = {g ∈
Hx

e \ Hx
e (x) : g ∩ [< x] ∈ Di} and Di = Hfi

yi [≤ yi]. We can thus conclude by Lemma 5.7 that

#btr∅(Hx
e \ Hx

e (x), [< x]) =
l∏

i=1

#btr∅(Hyi
fi
, [≤ yi]).

Therefore, if #btr∅(Hy
f , [≤ y]) and #btrx(Hy

f , [≤ y]) have already been computed for ev-
ery f <H e and y ≤ x, we can compute #btr∅(Hx

e , [≤ x]) with at most 3 × |Hx
e | additional

multiplications and 3 additions.

Computing #btrw(Hx
e , [≤ x]) by dynamic programming. Let x ≤ w. By Theorem 5.11,

we have:
#btrw(Hx

e , [≤ x]) = #btrw(Hx
e , [< x])

+ #btrw(Hx
e \ Hx

e (x), [< x])

−#btr{x,w}(Hx
e \ (Hx

e (x) ∩Hx
e (w)), [< x]).

We start by explaining how to compute #btrw(Hx
e , [< x]). Let C1, . . . , Ck be the connected

components of Hx
e [< x]. If there exists i such that Ci = {∅}, then #btrw(Hx

e , [< x]) = 0.
Otherwise, by Lemma 5.14 with S = {w}, there exists, for each 1 ≤ i ≤ k, fi ≤H e and yi < x
such that Hyi

fi
= {g ∈ Hx

e : g∩ [< x] ∈ Ci} and Ci = Hyi
fi
[≤ yi]. By Lemma 5.7, we can conclude

that

#btrw(Hx
e , [< x]) =

k∏
i=1

#btrw(Hyi
fi
, [≤ yi]).

We now explain how to compute #btrw(Hx
e \Hx

e (x), [< x]). Let D1, . . . , Dl be the connected
components of (Hx

e \Hx
e (x))[< x]. If there exists i such that Di = {∅}, then #btrw(Hx

e \Hx
e (x), [<

x]) = 0. Otherwise, by applying Lemma 5.14 with S = {x}, it follows that for every 1 ≤ i ≤ l,
there exists yi < x and fi ≤H e such that Hyi

fi
= {g ∈ Hx

e \ Hx
e (x) : g ∩ [< x] ∈ Di} and

Di = Hyi
fi
[≤ yi]. Thus, from Lemma 5.7,

#btrw(Hx
e \ Hx

e (x), [< x]) =

l∏
i=1

#btrw(Hyi
fi
, [≤ yi]).

Finally, we explain how to decompose #btr{x,w}(Hx
e \ (Hx

e (x)∩Hx
e (w)), [< x]) into a product

of pre-computed values. To ease the notation, we denote Hx
e \ (Hx

e (x) ∩ Hx
e (w)) by H′. Let

K1, . . . ,Kr be the connected components of H′[< x]. If there exists i such that Ki = {∅}, then
#btr{x,w}(H′, [< x]) = 0. Otherwise, by Lemma 5.14 applied with S = {x,w}, we have that
for every i, there exists yi < x and fi ≤H e such that Hyi

fi
= {g ∈ H′ : g ∩ [< x] ∈ Ki} and

Ki = Hyi
fi
[≤ yi]. By Lemma 5.7, we have:

#btr{x,w}(Hx
e \ (Hx

e (x) ∩Hx
e (w)), [< x]) =

r∏
i=1

#btr{x,w}∩V (Hyi
fi
)(H

yi
fi
, [≤ yi]).

Claim 5.14.1. For every i ≤ p, {x,w} ∩ V (Hyi
fi
) ̸= {x,w}.

Proof. Assume towards a contradiction that {x,w} ∩ V (Hyi
fi
) = {x,w}. Recall that Hyi

fi
[≤ yi].

By Lemma 5.12, {x,w} ⊆ V (Hyi
fi
) implies {x,w} ⊆ f . Thus, we have f ∈ Hx

e (x) ∩Hx
e (w). This

is a contradiction, since f ∈ Hyi
fi

⊆ Hx
e \ (Hx

e (w) ∩Hx
e (x)).
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Thus, {x,w} ∩ V (Hyi
fi
) equals either {x}, or {w} or ∅ by Claim 5.14.1. That is, we can

compute #btr{x,w}(Hx
e \ (Hx

e (x) ∩Hx
e (w)), [< x]) from precomputed terms.

We can conclude that, if #btr∅(Hy
f , [≤ y]) and #btrw(Hy

f , [≤ y]) have already been computed
for every f <H e and y ≤ w, we can compute #btrw(Hx

e , [≤ x]) with at most 3×|Hx
e | additional

multiplications and 3 additions.

It is easy to see that a straightforward greedy algorithm can be used to compute a β-
elimination ordering in polynomial time (see [122] for a better algorithm due to Paige and Tar-
jan). Moreover, the dynamic programming algorithm describes above computes at most O(n2|H|)
terms and each of them can be computed from the others with a polynomial number of arith-
metic operations. Finally, all these terms can be bounded by 2n since they are all the cardinals
of some collection of subsets of the vertices. Thus these arithmetic operations can be done in
polynomial time in the size of the input. It follows.

Theorem 5.15. Let H be a β-acyclic hypergraph. One can compute in polynomial time the
number of minimal transversals of H.

5.2.3 Applications to the counting of minimal dominating sets

For a vertex x of a graph G, let N [x] be the set {x}∪N(x). The closed neighborhood hypergraph
of G, denoted by N [G], is the hypergraph {N [x] : x ∈ V (G)}. Observe that any (minimal)
dominating set of G is a (minimal) transversal of N [G] and vice-versa.

In [93] the authors reduce the Hypergraph Dualisation problem into the enumeration of
minimal dominating sets, showing that the two problems are equivalent in the area of enumer-
ation problems (a fact already established in the case of optimization). The reduction indeed
shows that the counting versions are equivalent (under Turing reductions), and such a reduc-
tion is of big interest because it allows to study counting and enumeration problems associated
with the Hypergraph Dualisation in the perspectives of graph theory, where tools had been
developed to tackle combinatorial problems.

Despite the broad application of counting the minimal dominating sets in (hyper)graphs, the
problem was not investigated until recently, except in [30] where it is proved that the models
of any monadic second-order formula can be counted in polynomial time in graphs of bounded
clique-width. Indeed, as far as we know the counting of minimal dominating sets is only consid-
ered in [94, 73, 96]. This problem is known to be polynomial on interval graphs and permutation
graphs [94]. However, the systematic study of its computational complexity in graph classes is
only considered in [96], where the authors proved the #P-completeness in several graph classes
and asked whether the following dichotomy conjecture is true. A k-sun is a graph obtained from
a cycle of length 2k (k ≥ 3) by adding edges to make the even-indexed vertices pairwise adjacent.
Figure 5.2 represents a 3-sun, a 4-sun and a 5-sun.

3-sun 4-sun 5-sun

Figure 5.2: Representations of k-suns for k ∈ {3, 4, 5}.

A graph is chordal if it does not contain cycles of length at least 4 as induced subgraphs.
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Conjecture 5.16. Let C be a class of chordal graphs. If C does not contain a k-sun as an induced
subgraph, for k ≥ 4, then one can count in polynomial time the number of minimal dominating
sets of any graph in C. Otherwise, the problem is #P-complete.

This conjecture is motivated by the recursive structure of the chordal graphs excluding the
k-sun, for k ≤ 4.

We make a first step towards a proof of the first statement of the conjecture and provide
a polynomial time algorithm for computing the number of minimal dominating sets in strongly
chordal graphs, which are exactly chordal graphs without k-suns, for k ≥ 3.

Corollary 5.17. Let G be a strongly chordal graph. One can count in polynomial time the
number of minimal dominating sets of G.

Proof. Let G be a strongly chordal graph. It is well-known that the hypergraph N [G] is β-
acyclic [14]. By Theorem 5.15, one can count in polynomial time the minimal transversals of
N [G], which are exactly the minimal dominating sets of G.

Observe that this result is not implied by Theorem 5.1 as the mim-width of strongly chordal
graphs is unbounded [108].

5.2.4 Extension

We have proposed a polynomial time algorithm for counting the minimal transversals of β-
acyclic hypergraphs, supporting Conjecture 5.16. It seems that the technique can be adapted to
consider the counting of minimal (inclusion-wise) d-transversals of β-acyclic hypergraphs. Given
d ∈ N+, a d-transversal of a hypergraph H is a set of vertices X ⊆ V (H) such that for every
edge e ∈ E(H), we have |X ∩ e| ≥ d.

Besides resolving Conjecture 5.16, one might be interested in extending our result to the
counting of minimal models of a CNF formula. Let us introduce some definitions on CNF for-
mulas. Given a CNF formula F , for each clause C, we can associate a hyperedge EC that
contains all the variables occurring in C. The hypergraph associated with a CNF formula F is⋃

C∈F {EC}. A CNF formula is said β-acyclic if its associated hypergraph is β-acyclic. A model
τ of a CNF formula F is minimal if and only if for every variable x interpreted as true by τ ,
there exists a clause C such that the only literal of C interpreted as true by τ is x.

Capelli [21] proved that we can count the models of a β-acyclic formula in polynomial time.
We have proved that the minimal models of a monotone β-acyclic formula can be counted in
polynomial time. Indeed, there is a one-to-one correspondence between the minimal models of
a monotone CNF formula and the minimal transversals of its associated hypergraph. These two
results lead naturally to the following question.

Open Question 5.18. Can we count in polynomial time the minimal models of a non-monotone
β-acyclic CNF formula?

Let us explain, briefly, why we cannot answer the above question with our techniques. Recall
that, in order to compute #btrw(Hx

e , [≤ x]), we need to compute #btr{x,w}(Hx
e \ (Hx

e (x) ∩
Hx

e (w)), [< x]). If we apply our techniques to count the minimal models of a β-acyclic CNF
formula, then we have to face a similar situation. More precisely, for some β-acyclic CNF formula
F , we have to compute the number N of assignments that are the minimal models of the two
following CNF formulas (restricted to the variables in [< x]):

• the formula F ′ obtained from F by removing the clauses containing a positive occurrence
of x or w,
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• F̂ the formula obtained from F by removing the clauses where both x and w occurs
positively.

This is needed to compute what we might call w-blocked models of F restricted to the variables
in [≤ x] (the analog of #btrw(Hx

e , [≤ x])). Similarly to the minimal transversal case, we can
express N as a product of terms corresponding to the numbers of {x,w}-blocked models of
some subformulas of F . Moreover, each of these subformulas can be described with one variable
and one clause as we do for the hypergraphs Hy

f [≤ y] (see [20]). But, unlike the hypergraph
Hx

e \ (Hx
e (x) ∩Hx

e (w)), the hypergraph Ĥ associated with F̂ may admit hyperedges containing
both x and w. This is due to the fact that some clauses in F may contain {¬x,w}, {x,¬w}, or
{¬x,¬w}. We can not delete these clauses since we are looking for the number of minimal models
of F ′ that do not give a model of F with x and w assigned to true. Consequently, we cannot
prove an analog of Claim 5.14.1 for CNF formulas. That is, to compute N , we have to compute
the number of {x,w}-blocked models of some subformulas of F where both x and w may occur.
Hence, adapting our algorithm to non-monotone CNF formula leads to the computation of the
number of B-blocked models, for an exponential number of sets B.

It would be interesting to extend our results on β-acyclic hypergraphs via a width measure on
hypergraphs. For doing so, we can use β-hypertree-width, a parameter introduced in [77] which is
a generalization of tree-width on hypergraphs (both notions collapse when restricted to graphs).
It is known that a hypergraph has β-hypertree-width 1 if and only if it is β-acyclic. Besides this,
we do not know much about β-hypertree-width. In fact, the only characterization we have of
β-hypertree-width is obscure and cannot be used to design algorithms. For instance, we do not
even know whether SAT is solvable in polynomial time on CNF formulas whose hypergraphs
have β-hypertree-width 2. Moreover, the complexity of determining the β-hypertree-width of
a hypergraph is open [78]. A better understanding of this parameter is necessary in order to
obtain algorithmic applications. On the other hand, Ordyniak, Paulusma, and Szeider [113]
proved that SAT is W[1]-hard parameterized by the β-hypertree-width. Consequently, counting
the (minimal) models of CNF formulas is also W[1]-hard parameterized by the β-hypertree-width
of the associated hypergraphs. Whether there exist XP algorithms for these problems is open.

In [20], Capelli introduced a parameter called cover-width which may be an interesting al-
ternative to β-hypertree-width. The definition of cover-width is based on a generalization of the
elimination order from which we can define tree-width. Capelli [20] proved that:

• computing the cover-width of a hypergraph is NP-hard,

• a hypergraph has cover-width 1 if and only if it is β-acyclic,

• the β-hypertree-width of a hypergraph H is at most 3 · k+1 with k the cover-width of H.

Contrary to β-hypertree-width, the definition of cover-width is suited to design algorithms.
Indeed, Capelli [20] showed that, given a CNF formula F with a hypergraph H and an elimination
ordering on V (H) of cover-width k, we can count the models of F by doing O(nk ·mk) arithmetic
operations with n and m the number of variables and clauses of F (we do not know whether these
arithmetic operations can be performed in polynomial time). The approach used by Capelli to
obtain this algorithm is quite similar to the one he used on β-acyclic hypergraphs [20, 21]. Thus,
cover-width is a good candidate to generalize our result on the counting of minimal transversals
of β-acyclic hypergraphs. However, there is still much to understand on this width measure. For
example, can we bound the cover-width of any hypergraph in function of its β-hypertree-width?
What is the parameterized complexity of computing the cover-width of a hypergraph?
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Chapter 6

Conclusion

In this thesis, we have presented many open questions about width measures. The hardest ones
are certainly those concerning their computations (see Section 2.5). One of the most interesting
concerns the algorithmic applications of rank-width and whether we can obtain 2o(rw(G)2) ·nO(1)

time algorithms for NP-hard problems (see Question 2.59). In this chapter, we would like to
present two general open questions that are transversal to the different chapters of this thesis.

In Chapter 2, we presented Courcelle’s theorem and its variants for clique-width. These
theorems are incredibly useful to know whether a problem is FPT when parameterized by a
width measure such as tree-width, clique-width, rank-width, etc. But these meta-theorems do
not give any hint about how fast we can solve a problem. To obtain efficient algorithms, we have
to lose generality, but it does not mean that we have to look at each width measure and each
problem separately. This leads naturally to the following question.

Open Question 6.1. For each width measure f, can we characterize a huge number of graph
problems which admit an efficient FPT (or XP) algorithm parameterized by the f-width of a given
decomposition? For example, can we characterize a huge number of graph problems which admit
a 2O(mw(L)) · nO(1) time algorithm with L a given rooted layout?

This question has already been answered positively by Pilipczuk for tree-width in [123] where
he introduced a variant of modal logic which captures a vast majority of problems known to be
solvable in 2O(k) ·nO(1) with k the tree-width of the input graph. The framework designed in [16]
for (σ, ρ)-Dominating Set problems and extended in Section 4.2 to the acyclic and connected
variants of this family of problems shows that we can answer positively this latter question
without looking at each width measure separately. In Subsection 2.6.2, we asked whether we
can extend this approach to problems that are W[1]-hard parameterized by clique-width. Let
us be more ambitious. Can we design a framework from which we can obtain the best known
algorithms for many graph problems and many width measures? Notice that we can naturally
divide this question into two parts.

• The first part consists into designing a language L to express graph problems like the
family of (σ, ρ)-Dominating Set problems.

• The second part consists in creating a framework that, given the expression of some prob-
lem in L , provides an efficient algorithm for each width measure. The algorithms in
[18, 123] and in Section 4.2 are three examples of such framework.

To attack these questions, one could start by extending the results obtained in [18] and in Section
4.2. For example, it would be interesting to study other kinds of connectivity and acyclicity
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constraints such as the strange acyclicity constraint of the Subset Feedback Vertex Set
problem whose definition is the following.

Subset Feedback Vertex Set

Input: A graph G and S ⊆ V (G).
Output: A set X ⊆ V (G) of minimum size such that G[V (G) \X] does not admit a cycle
that contains a vertex in S.

Besides the fact that this problem is FPT parameterized by tree-width and clique-width (it
is easily expressible in MSO1), we do not know much on its parameterized complexity w.r.t.
width measures. Studying the parameterized complexity of these kinds of problems could help
to understand what makes a problem efficiently solvable with respect to the different width
measures.

Nevertheless, extending our knowledge on the known width measures is not sufficient to
understand entirely what makes an NP-hard problem tractable. Indeed, some NP-hard problems
are tractable on graph classes where even mim-width is unbounded. For instance, many NP-hard
problems are known to be tractable on chordal graphs. This is the case for Independent Set,
Graph Coloring, the unweighted variant of Feedback Vertex Set, and the problem of
counting the number of independent sets [55, 75, 112]. If we want to explain why these problems
are tractable on chordal graphs, we need a width measure with a stronger modeling power than
mim-width. Recently, Kang, Kwon, Strømme, and Telle [91] introduced such a width measure
that they called sim-width. This new width measure corresponds to the f-width of a graph where
f(A) is the size of a maximum induced matching between A and A in G. Kang et al. proved that
the sim-width of chordal graphs is 1, however, they were not able to obtain algorithmic results
directly from this new width measure. This leads to the following question.

Open Question 6.2. Can we explain the tractability results of NP-hard problems on chordal
graphs by the boundedness of their sim-width?

In the same spirit, one might try to explain the tractability results we have on strongly
chordal graphs. Indeed, some NP-hard (or #P-hard) problems on chordal graphs are known to
be tractable on strongly chordal graphs. This is the case of Dominating Set [12, 51] and the
problem of counting the number of (minimal) dominating sets (Corollary 5.3 and [96]). Unlike
chordal graphs, we do not have a width measure on graphs susceptible to explain the tractability
of these problems. However, in Subsection 5.2.4, we have presented two width measures on
hypergraphs which could explain the tractability results concerning β-acyclic hypergraphs and
thus the structured neighborhood of strongly chordal graphs.
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